\section{The Curious Kestrel} \definition{} Recall that a bird is \textit{egocenteric} if it is fond of itself. \\ A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$. \definition{} More generally, we say that a bird $A$ is \textit{fixated} on a bird $B$ if $Ax = B$ for all $x$. \\ Convince yourself that a hopelessly egocentric bird is fixated on itself. \problem{} Say $A$ is fixated on $B$. Is $A$ fond of $B$? \begin{solution} Yes! See the following proof. \begin{alltt} \lineno{} let B \lineno{} let B \lineno{} let A so that Ax = B \lineno{} \thus{} AB = B \qed{} \end{alltt} \end{solution} \vfill \definition{} The \textit{Kestrel} $K$ is defined by the following relationship: $$ (Kx)y = x $$ In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$. \problem{} Show that an egocenteric Kestrel is hopelessly egocentric \begin{solution} \begin{alltt} \lineno{} KK = K \lineno{} \thus{} (KK)y = K \lineno{} \thus{} Ky = K \qed{} \end{alltt} \end{solution} \vfill \pagebreak \problem{} Assume the forest contains a Kestrel. \\ Given $L_1$ and $L_2$, show that at least one bird is hopelessly egocentric. \begin{helpbox}[0.75] \texttt{Def:} $K$ is defined by $(Kx)y = x$ \\ \texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\ \texttt{???:} You'll need one more result from the previous section. Good luck! \end{helpbox} \begin{solution} The final piece is a lemma we proved earler: \\ Any bird is fond of at least one bird \begin{alltt} \lineno{} let A so that KA = A \cmnt{Any bird is fond of at least one bird} \lineno{} (KA)y = y \cmnt{By definition of the kestrel} \lineno{} \thus{} Ay = A \qed{} \cmnt{By 01} \end{alltt} \end{solution} \vfill \problem{Kestrel Left-Cancellation} In general, $Ax = Ay$ does not imply $x = y$. However, this is true if $A$ is $K$. \\ Show that $Kx = Ky \implies x = y$. \begin{alltt} \cmnt{This is a hint.} let x, y so that Kx = Ky \end{alltt} \begin{solution} \begin{alltt} \lineno{} let x, y so that Kx = Ky \lineno{} let z \lineno{} \lineno{} (Kx)z = (Ky)z \cmnt{By 01} \lineno{} \lineno{} \cmnt{By the definition of K} \lineno{} (Kx)z = x \lineno{} (Ky)z = y \lineno{} \lineno{} \thus{} x = (Kx)z = (Ky)z = y \qed{} \end{alltt} \end{solution} \vfill \pagebreak \problem{} Show that if $K$ is fond of $Kx$, $K$ is fond of $x$. \begin{solution} \begin{alltt} \lineno{} let x so that K(Kx) = Kx \lineno{} (K(Kx))y = (Kx)y \lineno{} = Kx \cmnt{By definition of K} \lineno{} x = Kx \cmnt{By 03 and definition of K} \end{alltt} \end{solution} \vfill \problem{} An egocentric Kestrel must be extremely lonely. Why is this? \begin{solution} If a Kestrel is egocenteric, it must be the only bird in the forest: \begin{alltt} \lineno{} \cmnt{Given} \lineno{} Kx = K for some x \lineno{} \cmnt{We have shown that an egocentric kestrel is hopelessly egocentric} \lineno{} Kx = K for all x \lineno{} \lineno{} let x, y \lineno{} Kx = K \lineno{} Ky = K \lineno{} Kx = Ky \lineno{} x = y for all x, y \cmnt{By \ref{leftcancel}} \lineno{} x = y = K \qed{} \cmnt{By 10, and since K exists} \end{alltt} \end{solution} \vfill \pagebreak