\problemdef{Algebra}{1}{ \statement{ Evaluate $ \bigl( 1 - \frac{1}{4} \bigr) \bigl( 1 - \frac{1}{9} \bigr) \bigl( 1 - \frac{1}{16} \bigr) ~ ... ~ \bigl( 1 - \frac{1}{255} \bigr) $ } \answer{$\frac{8}{15}$} } \problemdef{Algebra}{2}{ \statement{ $(a + b)(a + b - 1) = ab$ and $a^2 + b^2 = 3$. Find $a^3 + b^3$. } \answer{3} } \problemdef{Algebra}{3}{ \statement{ Simplify $(2^{62} + 1)/(2^{31} + 2^{16} + 1)$ } \answer{$2^{31} - 2^{16} + 1$} } \problemdef{Algebra}{4}{ \statement{ $x, y, z > 0$ and $xyz = 1$. \par Also, $x + 1/z = 5$ and $y + 1/x = 29$. Find $z + 1/y$. } \answer{$z + 1/y = 1/4$} } \problemdef{Algebra}{5}{ \statement{ Factor $x^8 + x^4 + 1$ into four quadratics. } \answer{$(x^2 - \sqrt{3} x + 1)~(x^2 + \sqrt{3} x + 1)~(x^2 - x + 1)~(x^2 + x + 1)$} }