% use [nosolutions] flag to hide solutions. % use [solutions] flag to show solutions. \documentclass[ solutions, nowarning, %singlenumbering ]{../../resources/ormc_handout} \usepackage{tikz} \usetikzlibrary{ matrix, decorations.pathreplacing, calc, positioning, fit } %\usepackage{lua-visual-debug} \renewcommand{\arraystretch}{1.2} \begin{document} \maketitle {Linear Maps} { Prepared by Mark on \today \\ } \input{parts/0 fields} \input{parts/1 spaces} \input{parts/2 linear} \input{parts/3 matrices} \section{Norms} \definition{} If $V$ is a vector space, a \textit{norm} in $V$ is a function $V \to \mathbb{R}^+$ that satisfies the following properties, \\ Where $x, y \in V$ and $c \in F$: \begin{itemize} \item Absolute Homogeneity: $||cx|| = |c|~||x||$ \item Positive-Definite: $||x|| \geq 0$ with equality iff $x = 0$. \item Triangle Inequalty: $||x+y|| \leq ||x|| + ||y||$ \end{itemize} \problem{} Show that the \textit{euclidian norm} defined by $||~[a, b]~|| = \sqrt{a^2 + b^2}$ is a norm on $\mathbb{R}^2$ \vfill \problem{} Show that in any vector space with an inner product, the \textit{induced norm} $||x|| = \sqrt{\langle x, x \rangle}$ is a norm. \vfill \problem{} Show that every norm satisfies the reverse triangle inequality: $$ ||x - y|| \geq |~||x|| - ||y||~| $$ \vfill \problem{} Prove the Cauchy-Schwartz inequality: $$ ||\langle x, y \rangle|| = ||x||~||y|| $$ \vfill \end{document}