\section{HXH} Let's return to the quantum circuit diagrams we discussed a few pages ago. \par Keep in mind that we're working with quantum gates and proper half-qubits---not classical bits, as we were before. \definition{Controlled Inputs} A \textit{control input} or \textit{inverted control input} may be attached to any gate. \par These are drawn as filled and empty circles in our circuit diagrams: \null\hfill \begin{minipage}{0.48\textwidth} \begin{center} \begin{tikzpicture}[scale=0.8] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{0}$}; \draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{0}$}; \draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) ; \draw[wirejoin] ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{2}{$X$} \node[gray] at ($([shift={(0,-0.75)}] dot)$) {Non-inverted control input}; \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}{0.48\textwidth} \begin{center} \begin{tikzpicture}[scale=0.8] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{0}$}; \draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{1}$}; \draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) ; \draw[wireijoin] ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{2}{$X$} \node[gray] at ($([shift={(0,-0.75)}] dot)$) {Inverted control input}; \end{tikzpicture} \end{center} \end{minipage} \hfill\null \vspace{2mm} An $X$ gate with a (non-inverted) control input behaves like an $X$ gate if \textit{all} its control inputs are $\ket{1}$, and like $I$ otherwise. An $X$ gate with an inverted control inputs does the opposite, behaving like $I$ if its input is $\ket{1}$ and like $X$ otherwise. The two circuits above illustrate this fact---take a look at their inputs and outputs. \vspace{2mm} Of course, we can give a gate multiple controls. \par An $X$ gate with multiplie controls behaves like an $X$ gate if... \begin{itemize} \item all non-inverted controls are $\ket{1}$, and \item all inverted controls are $\ket{0}$ \end{itemize} ...and like $I$ otherwise. \problem{} What are the final states of the qubits in the diagram below? \begin{center} \begin{tikzpicture}[scale = 1.0] \node[qubit] (a) at (0, 0) {$\ket{1}$}; \node[qubit] (b) at (0, -1) {$\ket{0}$}; \node[qubit] (c) at (0, -2) {$\ket{1}$}; \node[qubit] (d) at (0, -3) {$\ket{0}$}; \draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {?}; \draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {?}; \draw[wire] (c) -- ([shift={(3, 0)}] c.center) node[qubit] {?}; \draw[wire] (d) -- ([shift={(3, 0)}] d.center) node[qubit] {?}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] d)!0.5!([shift={(2,0)}] d)$) ; \draw[wirejoin] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) circle[radius=0.1] coordinate(dot) ; \draw[wireijoin] ($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) circle[radius=0.1] coordinate(dot) ; \draw[wirejoin] ($([shift={(1,0)}] d)!0.5!([shift={(2,0)}] d)$) circle[radius=0.1] coordinate(dot) ; \qubox{b}{1}{b}{2}{$X$} \end{tikzpicture} \end{center} \vfill \pagebreak \problem{} Consider the diagram below, with one controlled $X$ gate: \par \note[Note]{The CNOT gate from \ref{cnot} is a controlled $X$ gate.} \begin{center} \begin{tikzpicture}[scale=0.8] \node[qubit] (a) at (0, 0) {$\ket{a}$}; \node[qubit] (b) at (0, -1) {$\ket{b}$}; \draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {}; \draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) ; \draw[wirejoin] ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{2}{$X$} \end{tikzpicture} \end{center} Find a matrix $\text{X}_\text{c}$ that represents this gate, so that $\text{X}_\text{c}\ket{ab}$ works as expected. \begin{solution} \begin{equation*} \text{X}_\text{c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \end{equation*} Note that this is also the solution to \ref{cnotflipped}. \end{solution} \vfill \problem{} Now, evaluate the following. Remember that $\ket{+} = \frac{1}{\sqrt{2}}\Bigl(\ket{0} + \ket{1}\Bigr)$ and $\ket{-} = \frac{1}{\sqrt{2}}\Bigl(\ket{0} - \ket{1}\Bigr)$ \null\hfill \begin{minipage}{0.48\textwidth} \begin{center} \begin{tikzpicture}[scale=0.8] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{1}$}; \draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$}; \draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) ; \draw[wirejoin] ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{2}{$X$} \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}{0.48\textwidth} \begin{center} \begin{tikzpicture}[scale=0.8] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{+}$}; \draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$}; \draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) ; \draw[wirejoin] ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{2}{$X$} \end{tikzpicture} \end{center} \end{minipage} \hfill\null \vspace{5mm} \null\hfill \begin{minipage}{0.48\textwidth} \begin{center} \begin{tikzpicture}[scale=0.8] \node[qubit] (a) at (0, 0) {$\ket{-}$}; \node[qubit] (b) at (0, -1) {$\ket{1}$}; \draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$}; \draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) ; \draw[wirejoin] ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{2}{$X$} \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}{0.48\textwidth} \begin{center} \begin{tikzpicture}[scale=0.8] \node[qubit] (a) at (0, 0) {$\ket{+}$}; \node[qubit] (b) at (0, -1) {$\ket{-}$}; \draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$}; \draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) ; \draw[wirejoin] ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{2}{$X$} \end{tikzpicture} \end{center} \end{minipage} \hfill\null \hint{ Note that some of these states are entangled. The circuit diagrams are a bit misleading: we can't write an entangled state as two distinct qubits! \vspace{2mm} So, don't try to find $\ket{a}$ and $\ket{b}$. \par Instead find $\ket{ab} = \psi_0\ket{00} + \psi_1\ket{01} + \psi_2\ket{10} + \psi_3\ket{11}$, and factor it into $\ket{a} \otimes \ket{b}$ if you can. } \begin{solution} In all the below equations, let $\tau = \frac{1}{\sqrt{2}}$. \begin{itemize}[itemsep = 1mm] \item $ \text{X}_\text{c}\ket{01} = \ket{11} $ \item $ \text{X}_\text{c}\ket{0+} = \tau\ket{00} + \tau\ket{11} $ \note[Note]{This state is entangled!} \item $ \text{X}_\text{c}\ket{-1} = -\tau\ket{10} + \tau\ket{11} = (-\ket{-}) \otimes \ket{1} $ \item $ \text{X}_\text{c}\ket{+-} = \frac{1}{2}(\ket{00} - \ket{01} + \ket{10} - \ket{11}) = \ket{+-} $ \end{itemize} \end{solution} \vfill \pagebreak \generic{Remark:} Now, consider the following circuit: \begin{center} \begin{tikzpicture}[scale=0.8] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{1}$}; \draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {$\ket{a}$}; \draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {$\ket{b}$}; \qubox{b}{1}{b}{2}{$H$} \qubox{b}{3}{b}{4}{$H$} \draw[wire] ($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) -- ($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) ; \draw[wirejoin] ($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{2}{a}{3}{$X$} \end{tikzpicture} \end{center} We already know that $H$ is its own inverse: $HH = I$. \par Applying $H$ to a qubit twice does not change its state. \note{ Recall that $H = \frac{1}{\sqrt{2}}\left[\begin{smallmatrix} 1 & 1 \\ 1 & -1 \end{smallmatrix}\right]$ } \vspace{2mm} So, we might expect that the two circuits below are equivalent: \par After all, we $H$ the second bit, use it to control an $X$ gate, and then $H$ it back to its previous state. \null\hfill \begin{minipage}{0.48\textwidth}\begin{center} \begin{tikzpicture}[scale=0.8] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{1}$}; \draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {$\ket{a}$}; \draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {$\ket{b}$}; \qubox{b}{1}{b}{2}{$H$} \qubox{b}{3}{b}{4}{$H$} \draw[wire] ($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) -- ($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) ; \draw[wirejoin] ($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{2}{a}{3}{$X$} \end{tikzpicture} \end{center}\end{minipage} \hfill \begin{minipage}{0.48\textwidth}\begin{center} \begin{tikzpicture}[scale=0.8] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{1}$}; \draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {$\ket{c}$}; \draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {$\ket{d}$}; \draw[wire] ($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) -- ($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) ; \draw[wirejoin] ($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{2}{a}{3}{$X$} \end{tikzpicture} \end{center}\end{minipage} \hfill\null \vspace{2mm} This, however, isn't the case: \par If we compute the state $\ket{ab}$ in the left circuit, we get $[0.5, ~0.5, -0.5, ~0.5]$ (which is entangled), \par but the state $\ket{cd}$ on the right is $\ket{11} = [0,0,0,1]$. \par \note{This is easy to verify with a few matrix multiplications.} \vspace{4mm} How does this make sense? \par Remember that a two-bit quantum state is \textit{not} equivalent to a pair of one-qubit quantum states. We must treat a multi-qubit state as a single unit. Recall that a two-bit state $\ket{ab}$ comes with four probabilities: $\mathcal{P}(\texttt{00})$, $\mathcal{P}(\texttt{01})$, $\mathcal{P}(\texttt{10})$, and $\mathcal{P}(\texttt{11})$. If we change the probabilities of only $\ket{a}$, \textit{all four of these change!} \vfill Because of this fact, \say{controlled gates} may not work as you expect. They may seem to \say{read} their controlling qubit without affecting its state, but remember---a controlled gate still affects the \textit{entire} state. As we noted before, it is not possible to apply a transformation to one bit of a quantum state. \begin{center} \begin{tikzpicture}[scale=1] \node[qubit] (a) at (0, 0) {\texttt{1}}; \node[qubit] (b) at (0, -1) {\texttt{0}}; \draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {\texttt{0}}; \draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {\texttt{1}}; \ghostqubox{a}{1}{b}{2}{$T_1$} \ghostqubox{a}{2}{b}{3}{$T_2$} \ghostqubox{a}{3}{b}{4}{$T_3$} \end{tikzpicture} \end{center} \vfill \pagebreak