\section{Modular Arithmetic} \definition{} $\mathbb{Z}_n$ is the set of integers mod $n$. For example, $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. \par \problem{} Create a multiplication table for $\mathbb{Z}_4$: \begin{center} \begin{tabular}{c | c c c c} $\times$ & 0 & 1 & 2 & 3 \\ \hline 0 & ? & ? & ? & ? \\ 1 & ? & ? & ? & ? \\ 2 & ? & ? & ? & ? \\ 3 & ? & ? & ? & ? \\ \end{tabular} \end{center} \definition{} Let $a, b \in \mathbb{Z}_n$. \par If $a \times b = 1$, we say that $b$ is the \textit{inverse} of $a$ in $\mathbb{Z}_n$. \vspace{2mm} We usually write \say{$a$ inverse} as $a^{-1}$. \par Inverses are \textbf{not} guaranteed to exist. \theorem{} $a$ has an inverse in $\mathbb{Z}_n$ iff $\gcd(a, n) = 1$ \par \problem{} Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par Find the inverse of $20$ in $\mathbb{Z}_{14}$, if one exists. \par Find the inverse of $4$ in $\mathbb{Z}_7$, if one exists. \vfill \problem{} Today, we will often assume that $n$ is prime. \par Why? What is special about $\mathbb{Z}_n$ with a prime $n$? \vfill \pagebreak \problem{} In general, how can we find the inverse of $a$ in $\mathbb{Z}_n$? Assume $a$ and $n$ are coprime.\par \hint{You can find that $34^{-1}$ is $-175$ in $\mathbb{Z}_{541}$ by looking at a previous problem.} \begin{solution} We need an $a^{-1}$ so that $a \times a^{-1} = 1$. \par This means that $aa^{-1} - mk = 1$. \par Since $a$ and $m$ are coprime, $\gcd(a, m) = 1$ and $aa^{-1} - mk = \gcd(a, m)$ \par Now use the extended Euclidean algorithm from \ref{extendedeuclid} to find $a^\star$. \end{solution} \vfill \definition{} Elements in $\mathbb{Z}_n$ that have an inverse are called \textit{units}. \par The set of units in $\mathbb{Z}_n$ is called $\mathbb{Z}_n^\times$, which is read \say{$\mathbb{Z}$ mod $n$ cross}. \problem{} What is $\mathbb{Z}_5^\times$? \par What is $\mathbb{Z}_{12}^\times$? \par \vfill \pagebreak