\section{Spacetime Diagrams} We are going to derive the principles and consequences of special relativity using basic geometry. \\ o help with our visualization, we will be using spacetime diagrams (called {\em Minkowski diagrams}). To make our models simpler, we will only be considering {\em one spatial dimension}. We plot space, which we denote by $x$, as the horizontal axis, and time, which we denote by $t$ as the vertical axis. For a given object, we can then plot its position at any given time. \\ This will give a (potentially curvy) line that we call the object's {\em world line}. \example{} Suppose that at time $t = 0$, you are standing still with your cat at your feet. Your cat walks away from you at speed $1$. We can represent this with a spacetime diagram: \begin{center} % SPACETIME DIAGRAM with WORLD LINES \begin{tikzpicture}[scale=2.0] %\message{Worldlines^^J} \def\ymin{0.2} \def\xmin{1.6} \def\xmax{2} \def\Nlines{4} % number of world lines (at constant x/t) \pgfmathsetmacro\d{0.9*\xmax/\Nlines} % grid size \coordinate (O) at (0,0); \coordinate (T) at (0,\xmax+0.2); % WORLD LINES GRID %\message{ Making world lines...^^J} \foreach \i [evaluate={\x=\i*\d;}] in {1,...,\Nlines}{ \draw[world line] ( \x,-\ymin) -- ( \x,\xmax); \draw[world line t] (-\xmin, \x) -- (\xmax, \x); } \draw[world line] (-\d,-\ymin) -- (-\d,\xmax); \draw[world line] (-2*\d,-\ymin) -- (-2*\d,\xmax); \draw[world line] (-3*\d,-\ymin) -- (-3*\d,\xmax); % AXES \draw[->,thick] (0,-\ymin) -- (T) node[left=-1] {$t$}; \draw[->,thick] (-\xmin,0) -- (\xmax+0.2,0) node[below=0] {$x$}; % VECTORS \draw[vector,myred, very thick] (O) -- (4*\d,4*\d) node[mydarkred,right=10,above] {\contour{white}{cat: $x(t)=t$}}; \draw[vector,myblue, very thick] (O) -- (0,4*\d) node[mydarkblue,below left=0] {\contour{white}{you: $x(t)=0$}}; %\node[right=8,above,mydarkpurple] at (T) {$x(t)=0$}; \end{tikzpicture} \end{center} \note[Note]{ The horizontal axis is space and the vertical axis is time. \par We are only working with one spatial dimension. } \vfill \pagebreak \problem{} Suppose that you are standing still at time $t = 0$ and your many pets lie at your feet. \begin{itemize} \item Your cat, unhappy that she is not fed, begins walking away to your right at speed $2$. \item Your dog, distracted by a squirrel, walks away to your left at speed $1$. \item Your hamster, just wanting to feel included, waits a second and then follows the dog at speed $2$. After reaching your dog, your hamster turns around and sprints after the cat at speed $3$. \end{itemize} Draw this situation in the provided spacetime diagram. \makeatletter \if@solutions\else \emptydiagram{Alice} \fi \makeatother \begin{solution} \begin{center} \begin{tikzpicture}[scale=2.0] \def\ymin{0.2} \def\xmin{2} \def\xmax{2} \def\Nlines{4} % number of world lines (at constant x/t) \pgfmathsetmacro\d{0.9*\xmax/\Nlines} % grid size \coordinate (O) at (0,0); \coordinate (T) at (0,\xmax+0.2); % WORLD LINES GRID \foreach \i [evaluate={\x=\i*\d;}] in {1,...,\Nlines}{ \message{ Running i/N=\i/\Nlines, x=\x...^^J} \draw[world line] ( \x,-\ymin) -- ( \x,\xmax); \draw[world line t] (-\xmin, \x) -- (\xmax, \x); } \draw[world line] (-\d,-\ymin) -- (-\d,\xmax); \draw[world line] (-2*\d,-\ymin) -- (-2*\d,\xmax); \draw[world line] (-3*\d,-\ymin) -- (-3*\d,\xmax); \draw[world line] (-4*\d,-\ymin) -- (-4*\d,\xmax); % AXES \draw[->,thick] (0,-\ymin) -- (T) node[left=-1] {$t$}; \draw[->,thick] (-\xmin,0) -- (\xmax+0.2,0) node[below=0] {$x$}; % VECTORS \draw[vector,myred] (O) -- (0,4*\d) node[mydarkred,below left=0] {\contour{white}{you: $x(t)=0$}}; \draw[vector,myblue] (O) -- (4*\d,2*\d) node[mydarkblue,above left=0] {\contour{white}{cat: $x(t)=2t$}}; \draw[vector,mygreen] (O) -- (-4*\d,4*\d) node[mydarkgreen,below left=0] {\contour{white}{dog: $x(t)=-t$}}; \draw[vector,black] (O) -- (0,\d) -- (-2*\d, 2*\d) -- (4*\d, 4*\d) node[black,below right=0] {\contour{white}{hamster}}; % \draw[vector,myblue] % (O) to[out=35,in=-100] (O) % to[out=80,in=-80,looseness=1.5] (0.3*\xmax,4*\d) % node[mydarkblue,above=-3] {\contour{white}{cat: $x(t)$}}; %\node[right=8,above,mydarkpurple] at (T) {$x(t)=0$}; \end{tikzpicture} \end{center} \end{solution} \vfill \problem{Event} Any single point $(x,t)$ on a spacetime diagram is considered an {\em event} because it describes a time and place. For instance, what is the event that corresponds to your hamster catching up to your dog? \begin{solution} $(-2,2)$ \end{solution} \vfill \pagebreak \problem{} Suppose that the situation of \ref{pets scatter} occurred while you were riding on a train moving to the right at speed $1$. Everything occurs relative to you in the same way. Draw the same diagram in this new situation. Are any of your pets staying still in this new situation? \makeatletter \if@solutions\else \emptydiagram{Train} \fi \makeatother \begin{solution} \begin{center} \begin{tikzpicture}[scale=2.0] \def\ymin{0.2} \def\xmin{2} \def\xmax{2} \def\Nlines{4} % number of world lines (at constant x/t) \pgfmathsetmacro\d{0.9*\xmax/\Nlines} % grid size \coordinate (O) at (0,0); \coordinate (T) at (0,\xmax+0.2); % WORLD LINES GRID \message{ Making world lines...^^J} \foreach \i [evaluate={\x=\i*\d;}] in {1,...,\Nlines}{ \message{ Running i/N=\i/\Nlines, x=\x...^^J} \draw[world line] ( \x,-\ymin) -- ( \x,\xmax); \draw[world line t] (-\xmin, \x) -- (\xmax, \x); } \draw[world line] (-\d,-\ymin) -- (-\d,\xmax); \draw[world line] (-2*\d,-\ymin) -- (-2*\d,\xmax); \draw[world line] (-3*\d,-\ymin) -- (-3*\d,\xmax); \draw[world line] (-4*\d,-\ymin) -- (-4*\d,\xmax); % AXES \draw[->,thick] (0,-\ymin) -- (T) node[left=-1] {$t$}; \draw[->,thick] (-\xmin,0) -- (\xmax+0.2,0) node[below=0] {$x$}; % VECTORS \draw[vector,myred] (O) -- (4*\d,4*\d) node[mydarkred,below left=0] {\contour{white}{you: $x(t)=t$}}; \draw[vector,myblue] (O) -- (6*\d,2*\d) node[mydarkblue,above left=0] {\contour{white}{cat: $x(t)=3t$}}; \draw[vector,mygreen] (O) -- (0,4*\d) node[mydarkgreen,below left=0] {\contour{white}{dog: $x(t)=0$}}; \draw[vector,black] (O) -- (\d,\d) -- (0, 2*\d) -- (8*\d, 4*\d) node[black,below right=0] {\contour{white}{hamster}}; % \draw[vector,myblue] % (O) to[out=35,in=-100] (O) % to[out=80,in=-80,looseness=1.5] (0.3*\xmax,4*\d) % node[mydarkblue,above=-3] {\contour{white}{cat: $x(t)$}}; %\node[right=8,above,mydarkpurple] at (T) {$x(t)=0$}; \end{tikzpicture} \end{center} The dog remains stationary in this reference frame. \end{solution} \vfill \pagebreak