\section{Dot Products} \definition{} We can also define the \textit{dot product} of two vectors.\footnotemark{} \\ The dot product maps two elements of $\mathbb{R}^n$ to one element of $\mathbb{R}$: \footnotetext{ \textbf{Bonus content. Feel free to skip.} Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to $\mathbb{R}$. Why is this reasonable? \vspace{2mm} It's also worth noting that a function $f$ from $X$ to $Y$ can be defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition. } $$ a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n $$ \problem{} Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$ \vfill \problem{} Show that the dot product is \begin{itemize} \item Commutative \item Distributive $a \cdot (b + c) = a \cdot b + a \cdot c$ \item Homogenous: $x(a \cdot b) = xa \cdot b = a \cdot xb$ \\ \note{$x \in \mathbb{R}$, and $a, b$ are vectors.} \item Positive definite: $a \cdot a \geq 0$, with equality iff $a = 0$ \\ \note{$a \in \mathbb{R}^n$, and $0$ is the zero vector.} \end{itemize} \vfill \pagebreak \problem{} Say you have two vectors, $a$ and $b$. Show that $a \cdot b$ = $||a||~||b||\cos(\alpha)$, \\ where $\alpha$ is the angle between $a$ and $b$. \\ \hint{What is $c$ in terms of $a$ and $b$?} \hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$} \hint{The length of $a$ is $||a||$} \begin{center} \begin{tikzpicture}[scale=1] \draw[->] (0,0) coordinate (o) -- node[above left] {$a$} (1,2) coordinate (a) ; \draw[->] (o) -- node[below] {$b$} (3,0.5) coordinate (b) ; \draw[ draw = gray, text = gray, - ] (a) -- node[above] {$c$} (b); \draw pic[ "$\alpha$", draw = orange, text = orange, <->, angle eccentricity = 1.2, angle radius = 1cm ] { angle = b--o--a } ; \end{tikzpicture} \end{center} \vfill \problem{} If $a$ and $b$ are perpendicular, what must $a \cdot b$ be? Is the converse true? \vfill \pagebreak