\section{Definable Sets} Armed with $(), \land, \lor, \lnot, \rightarrow, \forall,$ and $\exists$, we have enough tools to define sets. \definition{Set-Builder Notation} Say we have a condition $c$. \par The set of all elements that satisfy that condition can be written as follows: $$ \{ x ~|~ \text{$c$ is true} \} $$ This is read \say{The set of $x$ where $c$ is true} or \say{The set of $x$ that satisfy $c$.} \vspace{2mm} For example, take the formula $\varphi(x) = \exists y ~ (y + y = x)$. \par The set of all even integers can then be written $$ \{ x ~|~ \varphi(x) \} = \{ x ~|~ \exists y ~ (y + y = x) \} $$ \definition{Definable Sets} Let $S$ be a structure over a language $\mathcal{L}$. \par We say a subset $M$ of $\mathcal{L}$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$. \vspace{4mm} For example, consider the structure $\Bigl( \mathbb{Z} ~\big|~ \{+\} \Bigr)$ \par \vspace{2mm} Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \par So we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par Remember---we can only use symbols that are available in our structure! \problem{} Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$ \vfill \problem{} Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$ \vfill \problem{} Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$ \vfill \pagebreak \problem{} Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z)\} \Bigr)$ \par \hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$} \hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$} \begin{solution} $\Bigl\{ x ~\bigl|~ \lnot (\text{real}(i \times x) = 0) \Bigr\}$ \end{solution} \vfill \problem{} Define the set of integers in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par \hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$} \hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$} \begin{solution} $\Bigl\{ x ~\bigl|~ \lnot (\text{real}(i \times x) = 0) \Bigr\}$ \end{solution} \vfill \theorem{Lagrange's Four Square Theorem} Every natural number may be written as a sum of four integer squares. \problem{} Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ \vfill \problem{} Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ \vfill \pagebreak