\section{To Mock a Mockingbird} \problem{} Mark tells you that any bird $A$ is fond of at least one other bird. \\ Complete his proof. \begin{alltt} let A \cmnt{Let A be any any bird.} let Cx = A(Mx) \cmnt{Define C as the composition of A and M} \cmnt{The rest is up to you.} CC = ?? \end{alltt} \begin{helpbox} \texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\ \texttt{Def:} $A$ is fond of $B$ if $AB = B$ \end{helpbox} \begin{solution} \begin{alltt} \lineno{} let A \cmnt{Let A be any any bird.} \lineno{} let Cx = A(Mx) \cmnt{Define C as the composition of A and M} \lineno{} CC = A(MC) \lineno{} = A(CC) \qed{} \end{alltt} \end{solution} \vfill \problem{} We say a bird $A$ is \textit{egocentric} if it is fond if itself. \\ Show that the laws of the forest guarantee that at least one bird is egocentric. \begin{helpbox} \texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\ \texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\ \texttt{Lem:} Any bird is fond of at least one bird. \end{helpbox} \begin{solution} \begin{alltt} \lineno{} \cmnt{We know M is fond of at least one bird.} \lineno{} let E so that ME = E \lineno{} \lineno{} ME = E \cmnt{By definition of fondness} \lineno{} ME = EE \cmnt{By definition of M} \lineno{} \thus{} EE = E \qed{} \end{alltt} \end{solution} \vfill \pagebreak \problem{} We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\ In other words, $A$ is agreeable if $Ax = Bx$ for some $x$ for all $B$. \begin{helpbox} \texttt{Def:} $Mx := xx$ \end{helpbox} \begin{solution} We know that $Mx = xx$. \\ From this definition, we see that $M$ agrees with any $x$ on $x$ itself. \end{solution} \vfill \problem{} Take two birds $A$ and $B$. Let $C$ be their composition. \\ Show that $A$ must be agreeable if $C$ is agreeable. \begin{alltt} \cmnt{Given information} let A, B let Cx = A(Bx) let D \cmnt{Arbitrary bird} let Ex = D(Bx) \cmnt{Define E as the composition of D and B} Cy = ?? \end{alltt} \begin{helpbox}[0.65] \texttt{Def:} $A$ is agreeable if $Ax = Bx$ for all $B$ with some $x$. \\ \texttt{Law:} For any $A, B$, there is C defined by Cx = A(Bx) \end{helpbox} \begin{solution} \begin{alltt} \lineno{} \cmnt{Given information} \lineno{} let A, B \lineno{} let Cx = A(Bx) \lineno{} \lineno{} let D \cmnt{Arbitrary bird} \lineno{} let Ex = D(Bx) \cmnt{Define E as the composition of D and B} \lineno{} let y so that Cy = Ey \cmnt{Such a y must exist because C is agreeable} \lineno{} \lineno{} A(By) = Ey \lineno{} = D(By) \qed{} \end{alltt} \end{solution} \vfill \pagebreak \problem{} Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ satisfying $Dx = A(B(Cx))$ \begin{solution} \begin{alltt} \lineno{} let A, B, C \lineno{} \lineno{} \cmnt{Invoke the Law of Composition:} \lineno{} let Q = BC \lineno{} let D = AQ \lineno{} \lineno{} D = AQ \lineno{} = A(BC) \qed{} \end{alltt} \end{solution} \vfill \problem{} We say two birds $A$ and $B$ are \textit{compatible} if there are birds $x$ and $y$ so that $Ax = y$ and $By = x$. \\ Note that $x$ and $y$ may be the same bird. \\ Show that any two birds in this forest are compatible. \\ \begin{alltt} let A, B let Cx = A(Bx) \end{alltt} \begin{helpbox} \texttt{Law:} Law of composition \\ \texttt{Lem:} Any bird is fond of at least one bird. \end{helpbox} \begin{solution} \begin{alltt} \lineno{} let A, B \lineno{} \lineno{} let Cx = A(Bx) \cmnt{Composition} \lineno{} let y = Cy \cmnt{Let C be fond of y} \lineno{} \lineno{} Cy = y \lineno{} = A(By) \lineno{} \lineno{} let x = By \cmnt{Rename By to x} \lineno{} Ax = y \qed{} \end{alltt} \end{solution} \vfill \problem{} Show that any bird that is fond of at least one bird is compatible with itself. \begin{solution} \begin{alltt} \lineno{} let A \lineno{} let x so that Ax = x \cmnt{A is fond of at least one other bird} \lineno{} Ax = x \qed{} \end{alltt} That's it. \end{solution} \vfill \pagebreak