\section{Bonus} \problem{} Find the inverse of 19 in $\mathbb{Z}/23$ \\ \hint{Recall the Euclidian Algorithm} \begin{solution} 17 \end{solution} \vfill \problem{} Prove Lagrange's theorem: $$ a^p = a \text{ (mod p)} $$ \vfill \problem{} Show that $a$ has an inverse mod $m$ iff $\gcd(a, m) = 1$ \\ \begin{solution} Assume $a^\star$ is the inverse of $a \pmod{m}$. \\ Then $a^\star \times a \equiv 1 \pmod{m}$ \\ Therefore, $aa^\star - 1 = km$, and $aa^\star - km = 1$ \\ We know that $\gcd(a, m)$ divides $a$ and $m$, therefore $\gcd(a, m)$ must divide $1$. \\ $\gcd(a, m) = 1$ \\ Now, assume $\gcd(a, m) = 1$. \\ By the Extended Euclidean Algorithm, we can find $(u, v)$ that satisfy $au+mv=1$ \\ So, $au-1 = mv$. \\ $m$ divides $au-1$, so $au \equiv 1 \pmod{m}$ \\ $u$ is $a^\star$. \end{solution} \vfill \problem{} Show that for any integers $a, b, c$, \\ $\gcd(ac + b, a) = \gcd(a, b)$\\ \vfill