% Copyright (C) 2023 % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % You may have received a copy of the GNU General Public License % along with this program. If not, see . % % % % If you edit this, please give credit! % Quality handouts take time to make. \section{Nonarchimedian Extensions} \definition{} An \textit{ordered field} consists of a set $S$, the operations $+$ and $\times$, and the relation $<$. \par An ordered field must satisfy the following properties: \begin{itemize} \item \textbf{Properties of $+$:} \begin{itemize} \item Commutativity: $a + b = b + a$ \item Associativity: $a + (b + c) = (a + b) + c$ \item Identity: there exists an element $0$ so that $a + 0 = a \forall a \in S$ \item Inverse: for every $-a$, there exists a $-a$ so that $a + (-a) = 0$ \end{itemize} \item \textbf{Properties of $\times$:} \begin{itemize} \item Commutativity \item Associativity \item Identity (which we label $1$) \item Inverse (which we label $a^{-1}$, and which doesn't exist for $0$) \item Distributivity: $a(b + c) = ab + ac$ \end{itemize} \item \textbf{Properties of $<$:} \begin{itemize} \item Non-reflexive: $x < x$ is always false \item Transitive: $x < y$ and $y < z$ imply $x < z$ \item Connected: for all $x, y \in S$, either $x < y$, $y > x$, or $x = y$. \item If $x < y$ then $x + z < y + z$ \item If $x < y$ and $z > 0$, then $xz < yz$ \item $0 < 1$ \end{itemize} \end{itemize} \definition{} An ordered field that contains $\mathbb{R}$ is called a \textit{nonarchimedian extension} of $\mathbb{R}$. \problem{} Show that each of the following is true in any ordered field. \begin{enumerate} \item if $x \neq 0$ then $(x^{-1})^{-1} = x$ \item $0 \times x = x$ \item $(-x)(-y) = xy$ \item if $0 < x < y$, then $x^{-1} > y^{-1}$ \end{enumerate} %\begin{solution} % \textbf{Part A:} % We know that $x^{-1} \times (x^{-1})^{-1} = 1$ \par % Thus $x \times (x^{-1} \times (x^{-1})^{-1}) = x \times 1 = x$ \par % We can rewrite this as $(x \times x^{-1}) \times (x^{-1})^{-1} = x$ \par % When then becomes $1 \times (x^{-1})^{-1} = x$ \par % And thus $(x^{-1})^{-1} = x$ %\end{solution} \vfill \pagebreak \definition{} In an ordered field, the \textit{magnitude} of a number x is defined as follows: \par \begin{equation*} |x| = \begin{cases} x & \text{\tab} x \geq 0 \\ -x & \text{\tab otherwise} \end{cases} \end{equation*} \definition{} We say an element $\delta$ of an ordered field is \textit{infinitesimal} if $|nd| < 1$ for all $n \in \mathbb{Z^+}$. \par \note{Note that $\mathbb{Z}^+$ is a subset of any nonarchimedian extension.} \par \vspace{2mm} Likewise, we say $x$ is \textit{limited} if $|x| < n$ for some $n \in \mathbb{Z}^+$. \par Elements that are not limited are \textit{unlimited}. \definition{} We say an element $x$ of a field is \textit{positive} if $x > 0$. \par We say $x$ is \textit{negative} if $x < 0$. \par \problem{} Show that a positive $\delta$ is infinitesimal if and only if $\delta < x$ for all $x \in \mathbb{R}^+$. \par Then, show that a negative $\delta$ is infinitesimal if and only if it is bigger than every $x \in \mathbb{R}^-$. \vfill \problem{} Prove the following statements: \par \begin{itemize} \item If $\delta$ and $\varepsilon$ are infinitesimal, then $\delta + \varepsilon$ is infinitesimal. \item If $\delta$ is infinitesimal and $x$ is limited, then $x\delta$ is infinitesimal. \item If $x$ and $y$ are limited, $xy$ and $x+y$ are too. \item A nonzero $\delta$ is infinitesimal iff $\delta^{-1}$ is unlimited. \end{itemize} \vfill \problem{} Let $\delta$ be a positive infinitesimal. Which is greater? \begin{itemize} \item $\delta$ or $\delta^2$ \item $(1 - \delta)$ or $(1 + \delta^2)^{-1!}$ \item $\frac{1 + \delta}{1 + \delta^2}$ or $\frac{2 + \delta^2}{2 + \delta^3}$ \par \note[Note]{we define $\frac{1}{x}$ as $x^{-1}$, and thus $\frac{a}{b} = a \times b^{-1}$} \end{itemize} \vfill \pagebreak \definition{} We say two elements of an ordered field are \textit{infinitely close} if $x - y$ is infinitesimal. \par We say that $x_0 \in \mathbb{R}$ is the \textit{standard part} of $x$ if it is infinitely close to $x$. \par \problem{} We will denote the standard part of $x$ as $\text{st}(x)$. \par Show that $\text{st}(x)$ is well-defined for limited $x$. \par (In other words, show that $x_0$ exists and is unique for limited $x$). \par \hint{To prove existence, consider $\text{sup}(\{a \in \mathbb{R} ~|~ a < x\}$)} \vfill %\problem{} %Let $H$ be positive unlimited. Determine which of the following are limited. \par \problem{} Show that $\text{st}(x + y) = \text{st}(x) + \text{st}(y)$ and $\text{st}(xy) = \text{st}(x) \text{st}(y)$. \par \vfill \pagebreak