\section{Quantum Teleportation} Superdense coding lets us convert quantum bandwidth into classical bandwidth. \par Quantum teleporation does the opposite, using two classical bits and an entangled pair to transmit a quantum state. \generic{Setup:} Again, suppose Alice and Bob each have half of a $\ket{\Phi^+}$ state. \par We'll call the state Alice wants to teleport $\ket{\psi} = \psi_0\ket{0} + \psi_1\ket{1}$. \par \problem{} What is the three-qubit state $\ket{\psi}\ket{\Phi^+}$ in terms of $\psi_0$ and $\psi_1$? \vfill \problem{} To teleport $\ket{\psi}$, Alice applies the following circuit to her two qubits, where $\ket{\Phi^+_\text{A}}$ is her half of $\ket{\Phi^+}$. \par She then measures both qubits and sends the result to Bob. \begin{center} \begin{tikzpicture}[scale = 1] \node[qubit] (a) at (0, 0) {$\ket{\Phi^+_\text{A}}$}; \node[qubit] (b) at (0, -1) {$\ket{\psi}$}; \draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {}; \draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) ; \draw[wirejoin] ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{b}{2}{b}{3}{$H$} \qubox{a}{1}{a}{2}{$X$} \end{tikzpicture} \end{center} What should Bob do so that $\ket{\Phi^+_B}$ takes the state $\ket{\psi}$ had initially? \begin{solution} \begin{itemize} \item If Bob receives \texttt{00}, he does nothing. \item If Bob receives \texttt{01}, he applies an $X$ gate to his qubit. \item If Bob receives \texttt{01}, he applies a $Z$ gate to his qubit. \item If Bob receives \texttt{11}, he applies $ZX$ to his qubit. \end{itemize} \linehack{} The complete circuit is shown below. Double lines indicate classical bits. \begin{center} \begin{tikzpicture}[scale = 1] \node[qubit] (a) at (0, -1) {$\ket{\Phi^+_\text{A}}$}; \node[qubit] (b) at (0, -2) {$\ket{\Phi^+_\text{B}}$}; \node[qubit] (c) at (0, 0) {$\ket{\psi}$}; \draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {}; \draw[wire] (b) -- ([shift={(9, 0)}] b.center) node[qubit] {$\ket{\psi}$}; \draw[wire] (c) -- ([shift={(5, 0)}] c.center) node[qubit] {}; \draw[wire, double] ([shift={(5, 0)}] a.center) -- ([shift={(9, 0)}] a.center) node[qubit] {} ; \draw[wire, double] ([shift={(5, 0)}] c.center) -- ([shift={(9, 0)}] c.center) node[qubit] {} ; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) ; \draw[wirejoin] ($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) circle[radius=0.1] coordinate(dot) ; \qubox{c}{2}{c}{3}{$H$} \qubox{a}{1}{a}{2}{$X$} \qubox{a}{3.8}{a}{5.5}{measure} \qubox{c}{3.8}{c}{5.5}{measure} \draw[wire, double] ($([shift={(6,0)}] a)!0.5!([shift={(7,0)}] a)$) -- ($([shift={(6,0)}] b)!0.5!([shift={(7,0)}] b)$) ; \draw[wirejoin] ($([shift={(6,0)}] a)!0.5!([shift={(7,0)}] a)$) circle[radius=0.1] coordinate(dot) ; \qubox{b}{6}{b}{7}{$X$} \draw[wire, double] ($([shift={(7,0)}] b)!0.5!([shift={(8,0)}] b)$) -- ($([shift={(7,0)}] c)!0.5!([shift={(8,0)}] c)$) ; \draw[wirejoin] ($([shift={(7,0)}] c)!0.5!([shift={(8,0)}] c)$) circle[radius=0.1] coordinate(dot) ; \qubox{b}{7}{b}{8}{$Z$} \end{tikzpicture} \end{center} \end{solution} \vfill \pagebreak