\section{Introduction} \generic{Setup:} Suppose we toss a 6-sided die $n$ times. \par It is easy to detect the first time we roll a 6. \par What should we do if we want to detect the \textit{last}? \problem{} Given $l \leq n$, what is the probability that the last $l$ tosses of this die contain exactly one six? \par \hint{Start with small $l$.} \begin{solution} $\mathcal{P}(\text{last } l \text{ tosses have exactly one 6}) = (\nicefrac{1}{6})(\nicefrac{5}{6})^{l-1} \times l$ \end{solution} \vfill \problem{} For what value of $l$ is the probability in \ref{lastl} maximal? \par The following table may help. \par \note{We only care about integer values of $l$.} \begin{center} \begin{tabular}{|| c | c | c ||} \hline \rule{0pt}{3.5mm} % Bonus height for exponent $l$ & $(\nicefrac{5}{6})^l$ & $(\nicefrac{1}{6})(\nicefrac{5}{6})^{l}$ \\ \hline\hline 0 & 1.00 & 0.167 \\ \hline 1 & 0.83 & 0.139 \\ \hline 2 & 0.69 & 0.116 \\ \hline 3 & 0.58 & 0.096 \\ \hline 4 & 0.48 & 0.080 \\ \hline 5 & 0.40 & 0.067 \\ \hline 6 & 0.33 & 0.056 \\ \hline 7 & 0.28 & 0.047 \\ \hline 8 & 0.23 & 0.039 \\ \hline \end{tabular} \end{center} \begin{solution} $(\nicefrac{1}{6})(\nicefrac{5}{6})^{l-1} \times l$ is maximal at $l = 5.48$, so $l = 5$. \par $l = 6$ is close enough. \end{solution} \vfill \problem{} Finish your solution: \par In $n$ rolls of a six-sided die, what strategy maximizes our chance of detecting the last $6$ that is rolled? \par What is the probability of our guess being right? \begin{solution} Whether $l = 5$, $5.4$, or $6$, the probability of success rounds to $0.40$. \end{solution} \vfill \pagebreak