\section{Logarithms Base 10} When we take a logarithm, the resulting number has two parts: the \textit{characteristic} and the \textit{mantissa}. \\ The characteristic is the integral (whole-numbered) part of the answer, and the mantissa is the fractional part (what comes after the decimal). \\ \medskip For example, $\log_{10}{18} = 1.255$, so in this case the characteristic is $1$ and the mantissa is $0.255$. \problem{} Approximate the following logs without a slide rule. Find the exact characteristic, and approximate the mantissa. \begin{enumerate} \item $\log_{10}{20}$ \item $\log_{2}{18}$ \end{enumerate} \begin{solution} \begin{enumerate} \item $\log_{10}{20} = 1.30$ \item $\log_{2}{18} = 4.17$ \end{enumerate} \end{solution} \vfill Now, find the L scale on your slide rule. As you can see on the right, its generating function is $\log_{10}{x}$. \problem{} Compute the following logarithms using your slide rule. \\ You'll have to find the characteristic yourself, but your L scale will give you the mantissa. \\ Don't forget your log identities! \begin{enumerate} \item $\log_{10}{20}$ \item $\log_{10}{15}$ \item $\log_{10}{150}$ \item $\log_{10}{0.024}$ \end{enumerate} \begin{solution} Careful with number 4. \begin{enumerate} \item $\log_{10}{20} = 1.30$ \item $\log_{10}{15} = 1.176$ \item $\log_{10}{150} = 2.176$ \item $\log_{10}{0.024} = -1.6197$ \end{enumerate} \end{solution} \vfill \pagebreak %\problem{} %Find the following. %\begin{enumerate}[itemsep=2mm] % \item $\frac{118 \times 0.51}{6.6}$ % \item $\sqrt{33.8} \times \sqrt[3]{226}$ % \item $\frac{\sqrt{152}}{\sqrt[3]{4.95}}$ % \item $\frac{\sqrt{96 \times 250}}{\sqrt{7 \times 0.88}}$ % \item The area of a circle with radius $1.47$ % \item The circumference of a circle with radius $31.4$ % \item The radius of a circle with area $6\pi$ % \item $\log_{10}{17.38}$ %\end{enumerate} %\vfill %\pagebreak \section{Logarithms in Any Base} Our slide rule easily computes logarithms in base 10, but we can also use it to find logarithms in \textit{any} base. \proposition{} This is usually called the \textit{change-of-base} formula: \[ \log_{b}{a} = \frac{\log_c{a}}{\log_c{b}} \] \problem{} Using log identities, prove \ref{logcob}. \vfill \problem{} Approximate the following: \begin{enumerate} \item $\log_{2}{56}$ \item $\log_{5.2}{26}$ \item $\log_{12}{500}$ \item $\log_{43}{134}$ \end{enumerate} \begin{solution} \begin{enumerate} \item $\log_{2}{56} = 5.81$ \item $\log_{5.2}{26} = 1.97$ \item $\log_{12}{500} = 2.50$ \item $\log_{43}{134} = 1.30$ \end{enumerate} \end{solution} \vfill \pagebreak