% Copyright (C) 2023 % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % You may have received a copy of the GNU General Public License % along with this program. If not, see . % % % % If you edit this, please give credit! % Quality handouts take time to make. % use the [nosolutions] flag to hide solutions, % use the [solutions] flag to show solutions. \documentclass[ solutions, singlenumbering, unfinished ]{../../resources/ormc_handout} \usepackage{../../resources/macros} \def\ket#1{\left|#1\right\rangle} \def\bra#1{\left\langle#1\right|} \usepackage{units} \input{tikzset} \uptitlel{Advanced 2} \uptitler{Winter 2022} \title{Intro to Quantum Computing} \subtitle{Prepared by \githref{Mark} on \today{}} \begin{document} \maketitle \input{parts/00.00 bits} \input{parts/00.01 two bits} \input{parts/02.00 half a qubit} \input{parts/02.01 two halves} \input{parts/03.00 logic gates} \input{parts/03.01 quantum gates} \end{document} \problem{} The SWAP gate swaps two bits: $\text{SWAP}\ket{ab} = \ket{ba}$. \par Find its matrix. \begin{solution} \begin{equation*} \text{SWAP} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \end{equation*} \end{solution} \vfill % \problem{} % The $T$ gate is a three-bit gate that inverts its right bit iff its left and middle inputs are both $\ket{1}$. \par % In other words, $T\ket{11x} = \ket{11}\ket{\text{not } x}$, and $T\ket{abx} = \ket{abx}$ for all other inputs. \par % Find the $T$ gate's matrix. \par % \note{ % This gate is particularly interesting because it's a \textit{universal quantum gate}: \\ % like NOR and NAND in classical logic, any quantum gate may emulated by only applying $T$ gates. % } % % \begin{solution} % \begin{equation*} % \text{T} = \begin{bmatrix} % 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ % 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ % 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ % 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ % 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ % 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ % 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ % 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ % \end{bmatrix} % \end{equation*} % \end{solution}