\section{Common Sets and Cartesian Products} \definition{} There are a few sets we use often. They have special names: \begin{itemize} \item $\mathbb{N} = \{0, 1, 2, 3, ...\}$ is the set of \textit{natural numbers}. \item $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ is the set of \textit{integers}. \item $\mathbb{Q}$ is the set of \textit{rational numbers}. \item $\mathbb{R}$ is the set of \textit{real numbers}. \end{itemize} \note[Note]{$\mathbb{Z}$ is called \say{blackboard zee} or \say{big zee.} Naturally, $\mathbb{N}$, $\mathbb{Q}$, and $\mathbb{R}$ have similar names. \\ This, of course, depends on context. Sometimes \say{zee} is all you need.} \problem{} Which of the following sets contain 100? \par \hint{There may be more than one answer in all the problems below.} \begin{tcolorbox}[ colback=white, colframe=black, width=0.5\textwidth, toprule=0.3mm, bottomrule=0.3mm, leftrule=0.3mm, rightrule=0.3mm, ] \hfill $\mathbb{N}$ \hfill $\mathbb{Z}$ \hfill $\mathbb{Q}$ \hfill $\mathbb{R}$ \hfill\null \end{tcolorbox} \vfill \problem{} Which of the following sets contain {\large $\frac{1}{2}$}? \par \begin{tcolorbox}[ colback=white, colframe=black, width=0.5\textwidth, toprule=0.3mm, bottomrule=0.3mm, leftrule=0.3mm, rightrule=0.3mm, ] \hfill $\mathbb{N}$ \hfill $\mathbb{Z}$ \hfill $\mathbb{Q}$ \hfill $\mathbb{R}$ \hfill\null \end{tcolorbox} \vfill \problem{} Which of the following sets contain $\pi$? \par \begin{tcolorbox}[ colback=white, colframe=black, width=0.5\textwidth, toprule=0.3mm, bottomrule=0.3mm, leftrule=0.3mm, rightrule=0.3mm, ] \hfill $\mathbb{N}$ \hfill $\mathbb{Z}$ \hfill $\mathbb{Q}$ \hfill $\mathbb{R}$ \hfill\null \end{tcolorbox} \vfill \problem{} Which of the following sets contain $\sqrt{-1}$? \par \begin{tcolorbox}[ colback=white, colframe=black, width=0.5\textwidth, toprule=0.3mm, bottomrule=0.3mm, leftrule=0.3mm, rightrule=0.3mm, ] \hfill $\mathbb{N}$ \hfill $\mathbb{Z}$ \hfill $\mathbb{Q}$ \hfill $\mathbb{R}$ \hfill\null \end{tcolorbox} \vfill \pagebreak \definition{} Consider the sets $A$ and $B$. The set $A \times B$ consists of all ordered\footnotemark{} pairs $(a, b)$ where $a \in A$ and $b \in B$. \par This is called the \textit{cartesian product}, and is usually pronounced \say{$A$ cross $B$}. \footnotetext{This means that order matters. $(a, b) \neq (b, a)$.} \vspace{2mm} For example, $\{1, 2, 3\} \times \{\heartsuit, \star\} = \{(1,\heartsuit),~ (1, \star),~ (2,\heartsuit),~ (2, \star),~ (3,\heartsuit),~ (3, \star)\}$ \par You can think of this as placing the two sets \say{perpendicular} to one another: \begin{center} \begin{tikzpicture}[ scale=1, bullet/.style={circle,inner sep=1.5pt,fill} ] \draw[->] (-0.2,0) -- (4,0) node[right]{$A$}; \draw[->] (0,-0.2) -- (0,3) node[above]{$B$}; \draw (1,0.1) -- ++ (0,-0.2) node[below]{$1$}; \draw (2,0.1) -- ++ (0,-0.2) node[below]{$2$}; \draw (3,0.1) -- ++ (0,-0.2) node[below]{$3$}; \draw (0.1, 1) -- ++ (-0.2, 0) node[left]{$\heartsuit$}; \draw (0.1, 2) -- ++ (-0.2, 0) node[left]{$\star$}; \node[bullet] at (1, 1){}; \node[bullet] at (2, 1) {}; \node[bullet] at (3, 1) {}; \node[bullet] at (1, 2) {}; \node[bullet] at (2, 2) {}; \node[bullet] at (3, 2) {}; \draw[rounded corners] (0.5, 0.5) rectangle (3.5, 2.5) {}; \node[above] at (2, 2.5) {$A \times B$}; \end{tikzpicture} \end{center} \problem{} Let $A = \{0, 1\} \times \{0, 1\}$ \par Let $B = \{ a, b\}$ \par What is $A \times B$? \vfill \problem{} What is $\mathbb{R} \times \mathbb{R}$? \par \hint{Use the \say{perpendicular} analogy} \vfill \pagebreak \definition{} $\mathbb{R}^n$ is the set of $n$-tuples of real numbers. \par In English, this means that an element of $\mathbb{R}^n$ is a list of $n$ real numbers: \par \vspace{4mm} Elements of $\mathbb{R}^2$ look like $(a, b)$, where $a, b \in \mathbb{R}$. \hfill \note{\textit{Note:} $\mathbb{R}^2$ is pronounced \say{arrgh-two.}} Elements of $\mathbb{R}^5$ look like $(a_1, a_2, a_3, a_4, a_5)$, where $a_n \in \mathbb{R}$. \par $\mathbb{R}^1$ and $\mathbb{R}$ are identical. \vspace{4mm} Intuitively, $\mathbb{R}^2$ forms a two-dimensional plane, and $\mathbb{R}^3$ forms a three-dimensional space. \par $\mathbb{R}^n$ is hard to visualize when $n \geq 4$, but you are welcome to try. \problem{} Convince yourself that $\mathbb{R} \times \mathbb{R}$ is $\mathbb{R}^2$. \par What is $\mathbb{R}^2 \times \mathbb{R}$? \vfill \problem{} What is $\mathbb{N}^2$? \vfill \problem{} What is $\mathbb{Z}^3$? \vfill \pagebreak