\section{More about $e$} \problem{} Show that $$ \lim_{n\to\infty}{ \bigg( 1 + \frac{1}{n+1} \bigg)^n = e } $$ \vfill \problem{} Show that $$ \lim_{n\to\infty}{ \bigg( 1 + \frac{1}{n} \bigg)^{n+1} = e } $$ \vfill \problem{} Show that $$ \lim_{n\to\infty}{ \bigg( 1 - \frac{1}{n} \bigg)^n = \frac{1}{e} } $$ \begin{solution} $ \lim_{n\to\infty}{(1 - \frac{1}{n})^n} = \lim_{n\to\infty}{(\frac{n-1}{n})^{(-1)(-n)}} $ \par $ = \lim_{n\to\infty}{(\frac{n}{n- 1 })^{-n}} = \lim_{n\to\infty}{(1 + \frac{1}{n-1})^{-n}} $ \par $ = \lim_{n\to\infty}{{(1 + \frac{1}{n-1})^{(n-1)(\frac{n}{n-1})}}^{-1}} $ \par $ = \frac{1}{e} $ \end{solution} \vfill \problem{} Show that $$ \lim_{n\to\infty}{ \bigg( 1 + \frac{x}{n} \bigg)^n = e^x } $$ Note that \ref{inverse_e} is a special case of this problem. \vfill \pagebreak \theorem{} The following important formula is proven in most calculus courses. $$e^x = \sum_{n=0}^{\infty}{\frac{x^n}{n!}} = 2 + \frac{x^2}{2!} + \frac{x^3}{3!} + ...$$ \vfill \problem{} What are the first six digits of $e$? \begin{solution} $e = 2.718\ 281\ 828$ \end{solution} \vfill \definition{} If $f$ is a function, we say that $L$ is a limit of $f$ at $\infty$ if for every $\epsilon > 0$, we can find an $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ for $x > M$. \par If this is true, we say that $L = \lim_{x\to\infty}{(f(x))}$. \vfill \problem{} Prove the following: \par Hint: If $x > 0$, then $\lfloor x \rfloor \leq x \leq \lceil x \rceil$ $$ \lim_{x\to\infty}{\bigg(1 + \frac{1}{x}\bigg)^x} = e$$ \vfill \pagebreak