\section{Matrices} \theorem{} Any linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as an $n \times m$ matrix. \\ Conversely, every $n \times m$ matrix represents a linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ \\ \vspace{2mm} In other words, \textbf{matrices are linear transformations}. \\ The next two problems provide a proof. \problem{} Let $A$ be an $m \times n$ matrix, and $v$ an $m \times 1$ vector. \\ Show that the map $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\ \vfill \problem{} Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$. \vfill \pagebreak \problem{} Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}(p)$. \\ Find a matrix that corresponds to $D$. \\ \hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How so?} \vfill \pagebreak