\section{Matrices} \definition{} A \textit{matrix} is a two-dimensional array of numbers: \\ $$ A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} $$ The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix. \definition{} We can define the product of a matrix $A$ and a vector $v$: $$ Av = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1a + 2b + 3c \\ 4a + 5b + 6c \end{bmatrix} $$ Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$: $$ Av = \begin{bmatrix} \text{---} a_1 \text{---} \\ \text{---} a_2 \text{---} \end{bmatrix} \begin{bmatrix} | \\ v \\ | \\ \end{bmatrix} = \begin{bmatrix} r_1v \\ r_2v \end{bmatrix} $$ Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix. \problem{} Say you multiply a size-$m$ vector by an $m \times n$ matrix. What is the size of your result? \vfill \problem{} Compute the following: $$ \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \end{bmatrix} $$ \vfill \pagebreak \definition{} We also multiply a matrix by a matrix: $$ AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 10 & 20 \\ 100 & 200 \end{bmatrix} = \begin{bmatrix} 210 & 420 \\ 430 & 860 \end{bmatrix} $$ Note each element of the resulting matrix is dot product of a row of $A$ and a column of $B$: $$ AB = \begin{bmatrix} \text{---} a_1 \text{---} \\ \text{---} a_2 \text{---} \end{bmatrix} \begin{bmatrix} | & | \\ v_1 & v_2 \\ | & | \\ \end{bmatrix} = \begin{bmatrix} r_1v_1 & r_1v_2 \\ r_2v_1 & r_2vm_2 \\ \end{bmatrix} $$ \begin{center} \begin{tikzpicture} \begin{scope}[layer = nodes] \matrix[ matrix of math nodes, left delimiter={[}, right delimiter={]} ] (A) at (0, 0){ 1 & 2 \\ 3 & 4 \\ }; \matrix[ matrix of math nodes, left delimiter={[}, right delimiter={]} ] (B) at (2, 0) { 10 & 20 \\ 100 & 200 \\ }; \node at (3.25, 0) {$=$}; \matrix[ matrix of math nodes, left delimiter={[}, right delimiter={]} ] (C) at (4.5, 0) { 210 & 420 \\ 430 & 860 \\ }; \end{scope} \draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=2mm]A-1-1) rectangle ([xshift=2mm,yshift=-2mm]A-1-2) {}; \draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-1) {}; \draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-4mm,yshift=2mm]C-1-1) rectangle ([xshift=4mm,yshift=-2mm]C-1-1) {}; \draw[rounded corners] ([xshift=-2mm,yshift=2mm]A-2-1) rectangle ([xshift=2mm,yshift=-2mm]A-2-2) {}; \draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-1-2) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {}; \draw[rounded corners] ([xshift=-4mm,yshift=2mm]C-2-2) rectangle ([xshift=4mm,yshift=-2mm]C-2-2) {}; \end{tikzpicture} \end{center} \problem{} Compute the following matrix product. \\ $$ \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{bmatrix} $$ \vfill \problem{} Compute the following matrix product or explain why you can't. $$ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 10 & 20 \\ 30 & 40 \end{bmatrix} $$ \vfill \problem{} If $A$ is an $m \times n$ matrix and $B$ is a $p \times q$ matrix, when does the product $AB$ exist? \vfill \pagebreak \problem{} Is matrix multiplication commutative? \\ \note{Does $AB = BA$ for all $A, B$? \\ You only need one counterexample to show this is false.} \vfill \definition{} Say we have a matrix $A$. The matrix $A^T$, pronounced \say{A-transpose}, is created by turning rows of $A$ into columns, and columns into rows: $$ \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} ^ T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} $$ \problem{} Compute the following: \hfill $ \begin{bmatrix} a & b \\ c & d \end{bmatrix} ^ T $\hfill $ \begin{bmatrix} 1 \\ 3 \\ 3 \\ 7 \\ \end{bmatrix} ^ T $\hfill $ \begin{bmatrix} 1 & 2 & 4 & 8 \\ \end{bmatrix} ^ T $ \hfill~ \vfill \pagebreak The \say{transpose} operator is often used to write column vectors compactly. \\ Vertical arrays don't look good in horizontal text. \problem{} Consider the vectors $a = [1, 2, 3]^T$ and $b = [40, 50, 60]^T$ \\ \begin{itemize} \item Compute the dot product $ab$. \item Can you redefine the dot product using matrix multiplication? \end{itemize} \note{As you may have noticed, a vector is a special case of a matrix.} \vfill \problem{} A \textit{column vector} is an $m \times 1$ matrix. \\ A \textit{row vector} is a $1 \times m$ matrix. \\ We usually use column vectors. Why? \\ \hint{How does vector-matrix multiplication work?} \vfill \pagebreak