\section{Quantifiers} Recall the logical symbols we introduced earlier: $(), \land, \lor, \lnot, \rightarrow$ \par We will now add two more: $\forall$ (for all) and $\exists$ (exists). \definition{} $\forall$ and $\exists$ are \textit{quantifiers}. They allow us to make statements about arbitrary symbols. \par \note{Quantifiers are aptly named: they tell us \textit{how many} symbols satisfy a certain sentence.} \vspace{2mm} Let's look at $\forall$ first. If $\varphi(x)$ is a formula, \par the formula $\forall x ~ \varphi(x)$ is true only if $\varphi$ is true for all $x$ in our universe. \vspace{1mm} For example, take the formula $\forall x ~ (0 < x)$. \par In English, this means \say{For any $x$, $x$ is bigger than zero,} or simply \say{Any $x$ is positive.} \vspace{3mm} $\exists$ is very similar: the formula $\exists x ~ \varphi(x)$ is true if ther is at least one $x$ for which $\varphi(x)$ is true. \par For example, $\exists ~ (0 < x)$ means \say{there is a positive number in our set.} \vspace{4mm} \problem{} Which of the following are true in $\mathbb{Z}$? Which are true in $\mathbb{R}^+_0$? \par \note{$\mathbb{R}^+_0$ is the set of positive real numbers and zero.} \begin{itemize}[itemsep = 1mm] \item $\forall x ~ (x \geq 0)$ \item $\lnot (\exists x ~ (x = 0))$ \item $\forall x ~ [\exists y ~ (y \times y = x)]$ \item $\forall xy ~ \exists z ~ (x < z < y)$ \tab \note{This is a compact way to write $\forall x ~ (\forall y ~ (\exists z ~ (x < z < y)))$} \item $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \end{itemize} \begin{solution} \begin{itemize} \item \say{all $x$ are positive} \tab $\mathbb{R}^+_0$ \item \say{zero doesn't exist} \tab neither \item \say{square roots exist} \tab $\mathbb{R}^+_0$ \item \say{this set is dense} \tab\null\tab $\mathbb{R}^+_0$ \item \say{there is no minimum} \tab $\mathbb{Z}$ \end{itemize} \end{solution} %\begin{examplesolution} % Here is a solution to the last part: $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \par % % \vspace{4mm} % % Reading this term-by-term, we get \tab \say{not exists $x$ where (for all $y$ ($x$ smaller than $y$))} \par % If we add some grammar, we get \tab \say{There isn't an $x$ where all $y$ are bigger than $x$} \par % which we can rephrase as \tab~\tab \say{There isn't a minimum value} \par % % \vspace{4mm} % % Which is true in $\mathbb{Z}$ and false in $\mathbb{R}^+_0$ %\end{examplesolution} \vfill \pagebreak \problem{} Does the order of $\forall$ and $\exists$ in a formula matter? \par What's the difference between $\exists x ~ \forall y ~ (x \leq y)$ and $\forall y ~ \exists x ~ (x \leq y)$? \par \hint{ Consider $\mathbb{R}^+$\hspace{-1.3ex},\hspace{0.8ex} the set of positive reals. Zero is not positive. \par Which of the above formulas is true in $\mathbb{R}^+$\hspace{-1.3ex},\hspace{0.8ex} and which is false? } \begin{solution} If $\exists x$ is inside $\forall y$, $x$ depends on $y$. We may pick a different value of $x$ for every $y$. \par If $\exists x$ is outside, $x$ is fixed \textit{before} we check all $y$. \end{solution} \vfill \problem{} Define 0 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$ \begin{solution} $\varphi(x) \coloneqq \bigl[~ \forall y ~ x \times y = x ~\bigr]$ \end{solution} \vfill \problem{} Define 1 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$ \begin{solution} $\varphi(x) \coloneqq \bigl[~ \forall y ~ x \times y = y ~\bigr]$ \end{solution} \vfill \pagebreak \problem{} Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$ \begin{solution} $\varphi(x) \coloneqq \bigl[~ (x<0) \land \lnot \exists y ~ (x < y < 0) ~\bigr]$ \end{solution} \vfill %\problem{} %Define $2$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$ %\vfill \problem{} Let $\varphi(x)$ be a formula. \par Write a formula equivalent to $\forall x ~ \varphi(x)$ using only logical symbols and $\exists$. \begin{solution} $\forall x ~ \varphi(x)$ is true if and only if $\lnot \exists x ~ \lnot \varphi(x)$ is true. \end{solution} \vfill \pagebreak