% use [nosolutions] flag to hide solutions. % use [solutions] flag to show solutions. \documentclass[ solutions, singlenumbering ]{../../resources/ormc_handout} \usepackage{../../resources/macros} \usetikzlibrary{calc} \uptitlel{Advanced 2} \uptitler{Winter 2023} \title{Symmetric Groups} \subtitle{Prepared by \githref{Mark} on \today{}} \def\line#1#2{ \draw[line width = 0.3mm, ->, ocyan] (#1) -- ($(#1) + (0, -1)$) -- ($(#2) + (0,1)$) -- (#2); } \begin{document} \maketitle \input{parts/0 intro} \input{parts/1 cycle} \input{parts/2 groups} \input{parts/3 subgroup} \section{Bonus problems} \problem{} Show that $x \in \mathbb{Z}^+$ has a multiplicative inverse mod $n$ iff $\text{gcd}(x, n) = 1$ \vfill \problem{} Let $\sigma = (\sigma_1 \sigma_2 ... \sigma_k)$ be a $k$-cycle in $S_n$, and let $\tau$ be an arbitrary element of $S_n$. \par Show that $\tau \sigma \tau^{-1}$ = $\bigl(\tau(\sigma_1), \tau(\sigma_2), ..., \tau(\sigma_k)\bigr)$ \par \hint{As usual, $\tau$ is a permutation. Thus, $\tau(x)$ is the value at position $x$ after applying $\tau$.} \vfill \problem{} Show that the set $\Bigl\{ (1, 2),~ (1,2,...,n) \Bigr\}$ generates $S_n$. \vfill % TODO: (a second day?) % alternating group % type and sign and conjugation % isomorphisms & automorphisms % automorphism groups \end{document}