\section{Introduction} \definition{} To form a \textit{knot}, take a string, tie a knot, then join the ends. \par You can also think of a knot as a path in three-dimensional space that doesn't intersect itself: \vspace{2mm} \begin{center} \begin{minipage}[t]{0.3\textwidth} \begin{center} \begin{tikzpicture}[scale = 0.8, baseline=(p)] \begin{knot} \strand (1,2) .. controls +(-45:1) and +(1,0) .. (0, 0) .. controls +(-1,0) and +(-90 -45:1) .. (-1,2); \end{knot} \coordinate (p) at (current bounding box.center); \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.3\textwidth} \begin{center} \begin{tikzpicture}[scale = 0.8, baseline=(p)] % Knot is stupid and includes invisible handles in the tikz bounding box. This line crops the image to fix that. \clip (-2,-1.7) rectangle + (4, 4); \begin{knot}[ consider self intersections=true, flip crossing = 2, ] \strand (1,2) .. controls +(-45:1) and +(120:-2.2) .. (210:2) .. controls +(120:2.2) and +(60:2.2) .. (-30:2) .. controls +(60:-2.2) and +(-90 -45:1) .. (-1,2); \end{knot} \coordinate (p) at (current bounding box.center); \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.3\textwidth} \begin{center} \begin{tikzpicture}[scale = 0.8, baseline=(p)] \clip (-2,-1.7) rectangle + (4, 4); \begin{knot}[ consider self intersections=true, flip crossing = 2, ] \strand (0,2) .. controls +(2.2,0) and +(120:-2.2) .. (210:2) .. controls +(120:2.2) and +(60:2.2) .. (-30:2) .. controls +(60:-2.2) and +(-2.2,0) .. (0,2); \end{knot} \coordinate (p) at (current bounding box.center); \end{tikzpicture} \end{center} \end{minipage} \end{center} If two knots may be deformed into each other without cutting, we say they are \textit{isomorphic}. \par If two knots are isomorphic, they are essentially the same knot. \definition{} The simplest knot is the \textit{unknot}. It is show below on the left. \par The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right. \begin{center} \begin{minipage}[t]{0.48\textwidth} \begin{center} \begin{tikzpicture}[baseline=(p)] \draw[circle] (0,0) circle (1); \coordinate (p) at (current bounding box.center); \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}[t]{0.48\textwidth} \begin{center} \begin{tikzpicture}[baseline=(p), scale = 0.8] \clip (-2,-1.7) rectangle + (4, 4); \begin{knot}[ consider self intersections=true, flip crossing = 2, ] \strand (0,2) .. controls +(2.2,0) and +(120:-2.2) .. (210:2) .. controls +(120:2.2) and +(60:2.2) .. (-30:2) .. controls +(60:-2.2) and +(-2.2,0) .. (0,2); \end{knot} \coordinate (p) at (current bounding box.center); \end{tikzpicture} \end{center} \end{minipage} \end{center} \vfill \pagebreak \problem{} Below are the only four knots with one crossing. \par Show that every nontrivial knot more than two crossings. \par \hint{There are four knots with two crossings. What are they?} \begin{center} \includegraphics[width=0.8\linewidth]{images/one crossing.png} \end{center} \begin{solution} Draw them all. Each is isomorphic to the unknot. \end{solution} \vfill \problem{} Show that this is the unknot. \par A wire or an extension cord may help. \begin{center} \includegraphics[width=0.35\linewidth]{images/big unknot.png} \end{center} \definition{} As we said before, there are many ways to draw the same knot. \par We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight knot}. \vspace{2mm} \begin{center} \includegraphics[width=0.8\linewidth]{images/figure eight.png} \end{center} \vspace{2mm} \problem{} Convince yourself that these are equivalent. \par Try to deform them into each other with a cord! \vfill \pagebreak