\section{Two Halves of a Qubit} \definition{} Just as before, we'll represent multi-quibit states as linear combinations of multi-qubit basis states. \par For example, a two-qubit state $\ket{ab}$ is the four-dimensional unit vector \begin{equation} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = a \ket{00} + b\ket{01} + c\ket{10} + d\ket{11} \end{equation} As always, multi-qubit states are unit vectors. \par Thus, $a^2 + b^2 + c^2 + d^2 = 1$ in the two-bit case above. \problem{} Say we have two qubits $\ket{\psi}$ and $\ket{\varphi}$. \par Show that $\ket{\psi} \otimes \ket{\varphi}$ is always a unit vector (and is thus a valid quantum state). \vfill \definition{Measurement II} Measurement of a two-qubit state works just like measurement of a one-qubit state: \par If we measure $a\ket{00} + b\ket{01} + c\ket{10} + d\ket{11}$, \par we get one of the four basis states with the following probabilities: \begin{itemize} \item $\mathcal{P}(\ket{00}) = a^2$ \item $\mathcal{P}(\ket{01}) = b^2$ \item $\mathcal{P}(\ket{10}) = c^2$ \item $\mathcal{P}(\ket{11}) = d^2$ \end{itemize} Of course, the sum of all the above probabilities is $1$. \problem{} Consider the two-qubit state $\ket{\psi} = \frac{1}{\sqrt{2}} \ket{00} + \frac{1}{2} \ket{01} + \frac{\sqrt{3}}{4} \ket{10} + \frac{1}{4} \ket{11}$ \begin{itemize}[itemsep=2mm] \item If we measure both bits of $\ket{\psi}$ simultaneously, \par what is the probability of getting each of $\ket{00}$, $\ket{01}$, $\ket{10}$, and $\ket{11}$? \item If we measure the ONLY the first qubit, what is the probability we get $\ket{0}$? How about $\ket{1}$? \par \hint{There are two basis states in which the first qubit is $\ket{0}$.} \item Say we measured the second bit and read $\ket{1}$. \par If we now measure the first bit, what is the probability of getting $\ket{0}$? \end{itemize} \vfill \pagebreak \problem{} Again, consider the two-qubit state $\ket{\psi} = \frac{1}{\sqrt{2}} \ket{00} + \frac{1}{2} \ket{01} + \frac{\sqrt{3}}{4} \ket{10} + \frac{1}{4} \ket{11}$ \par If we measure the first qubit of $\ket{\psi}$ and get $\ket{0}$, what is the resulting state of $\ket{\phi}$? \par What would the state be if we'd measured $\ket{1}$ instead? \vfill \problem{} Consider the three-qubit state $\ket{\psi} = c_0\ket{000} + c_1\ket{001} + ... + c_7 \ket{111}$. \par Say we measure the first two qubits and get $\ket{00}$. What is the resulting state of $\ket{\psi}$? \begin{solution} We measure $\ket{00}$ with probability $c_0^2 + c_1^2$, and $\ket{\psi}$ collapses to \begin{equation*} \frac{c_0\ket{000} + c_1\ket{001}}{\sqrt{c_0^2 + c_1^2}} \end{equation*} \end{solution} \vfill \pagebreak \definition{Entanglement} Some product states can be factored into a tensor product of individual qubit states. For example, \begin{equation*} \frac{1}{2} \bigl(\ket{00} + \ket{01} + \ket{10} + \ket{11}\bigr) = \frac{1}{\sqrt{2}}\bigl( \ket{0} + \ket{1} \bigr) \otimes \frac{1}{\sqrt{2}}\bigl( \ket{0} - \ket{1} \bigr) \end{equation*} Such states are called \textit{product states.} States that aren't product states are called \textit{entangled} states. \problem{} Factor the following product state: \begin{equation*} \frac{1}{2\sqrt{2}} \bigl(\sqrt{3}\ket{00} - \sqrt{3}\ket{01} + \ket{10} - \ket{11}\bigr) \end{equation*} \begin{solution} \begin{equation*} \frac{1}{2\sqrt{2}} \biggl(\sqrt{3}\ket{00} - \sqrt{3}\ket{01} + \ket{10} - \ket{11}\biggr) = \biggl( \frac{\sqrt{3}}{2}\ket{0} + \frac{1}{2}\ket{1} \biggr) \otimes \biggl(\frac{1}{\sqrt{2}}\ket{0} - \frac{1}{\sqrt{2}}\ket{1} \biggr) \end{equation*} \end{solution} \vfill \problem{} Show that the following is an entangled state. \begin{equation*} \frac{1}{\sqrt{2}}\ket{00} + \frac{1}{\sqrt{2}}\ket{11} \end{equation*} \begin{solution} $ \left[ \begin{smallmatrix} a_0 \\ a_1 \end{smallmatrix} \right] \otimes \left[ \begin{smallmatrix} b_0 \\ b_1 \end{smallmatrix} \right] = a_0b_0\ket{00} + a_0b_1\ket{01} + a_1b_0\ket{10} + a_1b_1\ket{11} $ \vspace{2mm} So, we have that $a_1b_1 = a_0b_0 = \sqrt{2}^{-1}$ \par But $a_0b_1 = a_1b_0 = 0$, so one of $a_0$ and $b_1$ must be zero. \par We thus have a contradiction. \end{solution} \vfill \pagebreak