\section{Crosses} You are given an $n \times n$ grid. Some of its squares are white, some are gray. Your goal is to place $n$ crosses on white cells so that each row and each column contains exactly one cross. \vspace{2ex} Here is an example of such a grid, including a possible solution. \newcommand{\bx}[2]{ \draw[ line width = 1.5mm ] (#1 + 0.3, #2 + 0.3) -- (#1 + 0.7, #2 + 0.7) (#1 + 0.7, #2 + 0.3) -- (#1 + 0.3, #2 + 0.7); } \newcommand{\dk}[2]{ \draw[ line width = 0mm, fill = gray ] (#1, #2) -- (#1 + 1, #2) -- (#1 + 1, #2 + 1) -- (#1, #2 + 1); } \begin{center} \begin{tikzpicture}[ scale = 0.8 ] % Dark squares \dk{0}{2} \dk{1}{0} \dk{1}{1} \dk{1}{2} \dk{1}{4} \dk{2}{2} \dk{2}{4} \dk{3}{0} \dk{3}{1} \dk{3}{3} \dk{3}{4} \dk{4}{3} \dk{4}{1} % Base grid \foreach \x in {0,...,5} { \draw[line width = 0.4mm] (0, \x) -- (5, \x) (\x, 0) -- (\x, 5); } % X marks \bx{0}{4} \bx{1}{3} \bx{2}{1} \bx{3}{2} \bx{4}{0} \end{tikzpicture} \end{center} \problem{} Find a solution for the following grid. \begin{center} \begin{tikzpicture}[ scale = 1 ] % Dark squares \dk{0}{2} \dk{0}{3} \dk{0}{6} \dk{0}{7} \dk{1}{0} \dk{1}{1} \dk{1}{4} \dk{1}{5} \dk{1}{6} \dk{1}{7} \dk{2}{0} \dk{2}{1} \dk{2}{3} \dk{2}{4} \dk{2}{5} \dk{2}{6} \dk{2}{7} \dk{3}{1} \dk{3}{2} \dk{3}{3} \dk{3}{4} \dk{3}{5} \dk{3}{6} \dk{4}{0} \dk{4}{1} \dk{4}{2} \dk{4}{3} \dk{4}{6} \dk{5}{1} \dk{5}{4} \dk{5}{5} \dk{5}{6} \dk{6}{0} \dk{6}{1} \dk{6}{2} \dk{6}{3} \dk{6}{4} \dk{6}{5} \dk{7}{0} \dk{7}{4} \dk{7}{6} \dk{7}{7} % Base grid \foreach \x in {0,...,8} { \draw[line width = 0.4mm] (0, \x) -- (8, \x) (\x, 0) -- (\x, 8); } \end{tikzpicture} \end{center} \pagebreak \begin{solution} \begin{center} \begin{tikzpicture}[ scale = 0.6 ] % Dark squares \dk{0}{2} \dk{0}{3} \dk{0}{6} \dk{0}{7} \dk{1}{0} \dk{1}{1} \dk{1}{4} \dk{1}{5} \dk{1}{6} \dk{1}{7} \dk{2}{0} \dk{2}{1} \dk{2}{3} \dk{2}{4} \dk{2}{5} \dk{2}{6} \dk{2}{7} \dk{3}{1} \dk{3}{2} \dk{3}{3} \dk{3}{4} \dk{3}{5} \dk{3}{6} \dk{4}{0} \dk{4}{1} \dk{4}{2} \dk{4}{3} \dk{4}{6} \dk{5}{1} \dk{5}{4} \dk{5}{5} \dk{5}{6} \dk{6}{0} \dk{6}{1} \dk{6}{2} \dk{6}{3} \dk{6}{4} \dk{6}{5} \dk{7}{0} \dk{7}{4} \dk{7}{6} \dk{7}{7} % Base grid \foreach \x in {0,...,8} { \draw[line width = 0.4mm] (0, \x) -- (8, \x) (\x, 0) -- (\x, 8); } % X marks \bx{0}{5} \bx{1}{3} \bx{2}{2} \bx{3}{7} \bx{4}{4} \bx{5}{0} \bx{6}{6} \bx{7}{1} \end{tikzpicture} \end{center} \end{solution} \problem{} Turn this into a network flow problem. \vfill \pagebreak