\section{Definable Sets} Armed with $(), \land, \lor, \lnot, \rightarrow, \forall,$ and $\exists$, we have enough tools to define sets. \definition{Set-Builder Notation} Say we have a condition $c$. \par The set of all elements that satisfy that condition can be written as follows: $$ \{ x ~|~ \text{$c$ is true} \} $$ This is read \say{The set of $x$ where $c$ is true} or \say{The set of $x$ that satisfy $c$.} \vspace{2mm} For example, take the formula $\varphi(x) = \exists y ~ (y + y = x)$. \par The set of all even integers can then be written $$ \{ x ~|~ \varphi(x) \} = \{ x ~|~ \exists y ~ (y + y = x) \} $$ \definition{Definable Sets} Let $S$ be a structure with a universe $U$. \par We say a subset $M$ of $U$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$. \vspace{4mm} For example, consider the structure $\Bigl( \mathbb{Z} ~\big|~ \{+\} \Bigr)$ \par \vspace{2mm} Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \par So we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par Remember---we can only use symbols that are available in our structure! \problem{} Is the empty set definable in any structure? \vfill \problem{} Define $\{0, 1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$ \begin{instructornote} Here's an interesting fact: A finite set of definable elements is always definable. Why? \par An infinite set of definable elements may not be definable. \end{instructornote} \vfill \problem{} Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$ \vfill \pagebreak \problem{} Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z)\} \Bigr)$ \par \hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$} \hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$} \begin{solution} $\Bigl\{ x ~\bigl|~ \text{real}(x) \neq x \Bigr\}$ \end{solution} \vfill \problem{} Define $\mathbb{R}^+_0$ in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par \vfill \problem{} Let $\bigtriangleup$ be a relational symbol. $a \bigtriangleup b$ holds iff $a$ divides $b$. \par Define the set of prime numbers in $\Bigl( \mathbb{Z}^+ ~\big|~ \{ \bigtriangleup \} \Bigr)$ \par \vfill \theorem{Lagrange's Four Square Theorem} Every natural number may be written as a sum of four integer squares. \problem{} Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ \vfill \problem{} Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ \par \hint{We can't formally define a relation yet. Don't worry about that for now. \\ You can repharase this question as \say{given $a,b \in \mathbb{Z}$, can you write a sentence that is true iff $a < b$?}} \vfill \pagebreak \problem{} Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par The relation $a \diamond b$ holds if $| a - b | = 1$ \problempart{} Define 0 in $S$. \problempart{} Define $\{-1, 1\}$ in $S$. \problempart{} Define $\{-2, 2\}$ in $S$. \vfill \problem{} Let $P$ be the set of all subsets of $\mathbb{Z}^+_0$. This is called a \textit{power set}. \par Let $S$ be the stucture $( P ~|~ \{\subseteq\})$ \par \problempart{} Show that the empty set is definable in $S$. \par \hint{Defining $\{\}$ with $\{x ~|~ x \neq x\}$ is \textbf{not} what we need here. \\ We need $\varnothing \in P$, the \say{empty set} element in the power set of $\mathbb{Z}^+_0$.} \problempart{} Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par Show that $\Bumpeq$ is definable in $S$. \problempart{} Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{complement} of the set $x$. \par Show that $f$ is definable in $S$. \vfill \pagebreak