\section{Quantifiers} Recall the logical symbols we introduced earlier: $(), \land, \lor, \lnot, \rightarrow$ \par We will now add two more: $\forall$ (for all) and $\exists$ (exists). \definition{} $\forall$ and $\exists$ are \textit{quantifiers}. They allow us to make statements about arbitrary symbols. \vspace{2mm} Let's look at $\forall$ first. Let $\varphi(x)$ be a formula. \par Then, the formula $\forall x ~ \varphi(x)$ says \say{$\varphi$ is true for all possible $x$.} \vspace{1mm} For example, take the formula $\forall x ~ (0 < x)$. \par In English, this means \say{For any $x$, $x$ is bigger than zero,} or simply \say{Any $x$ is positive.} \vspace{3mm} $\exists$ is very similar: the formula $\exists x ~ \varphi(x)$ states that there is at least one $x$ that makes $\varphi$ true. \par For example, $\exists ~ (0 < x)$ means \say{there is a positive number in our set}. \vspace{4mm} \problem{} Which of the following are true in $\mathbb{Z}$? \par Which are true in $\mathbb{R}^+_0$? \par \hint{$\mathbb{R}^+_0$ is the set of positive real numbers and zero.} \par \begin{itemize}[itemsep = 1mm] \item $\forall x ~ (x \geq 0)$ \item $\lnot (\exists x ~ (x = 0))$ \item $\forall x ~ [\exists y ~ (y \times y = x)]$ \item $\forall xy ~ \exists z ~ (x < z < y)$ \tab \note{This is a compact way to write $\forall x ~ (\forall y ~ (\exists z ~ (x < z < y)))$} \item $\lnot \exists x ~ ( \forall y ~ (x < y) )$ %\tab~\tab \note{Solution is below.} \end{itemize} %\begin{examplesolution} % Here is a solution to the last part: $\lnot \exists x ~ ( \forall y ~ (x < y) )$ \par % % \vspace{4mm} % % Reading this term-by-term, we get \tab \say{not exists $x$ where (for all $y$ ($x$ smaller than $y$))} \par % If we add some grammar, we get \tab \say{There isn't an $x$ where all $y$ are bigger than $x$} \par % which we can rephrase as \tab~\tab \say{There isn't a minimum value} \par % % \vspace{4mm} % % Which is true in $\mathbb{Z}$ and false in $\mathbb{R}^+_0$ %\end{examplesolution} \vfill \pagebreak \problem{} Does the order of $\forall$ and $\exists$ in a formula matter? \par What's the difference between $\exists x ~ \forall y ~ (x < y)$ and $\forall y ~ \exists x ~ (x < y)$? \par \hint{In $\mathbb{R}^+$, the first is false and the second is true. $\mathbb{R}^+$ does not contain zero.} \vfill \problem{} Define 0 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$ \vfill \problem{} Define 1 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$ \vfill \pagebreak \problem{} Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$ \vfill %\problem{} %Define $2$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$ %\vfill \problem{} Let $\varphi(x)$ be a formula. \par Define $(\forall x ~ \varphi(x))$ using logical symbols and $\exists$. \begin{solution} $\Bigl(\forall x ~ \varphi(x)\Bigr)$ is true iff $\lnot \Bigl(\exists x ~ \lnot \varphi(x) \Bigr)$ is true. \end{solution} \vfill \pagebreak