% use [nosolutions] flag to hide solutions. % use [solutions] flag to show solutions. \documentclass[ solutions, singlenumbering ]{../../resources/ormc_handout} \uptitlel{Advanced 1} \uptitler{Summer 2023} \title{The Size of Sets, Part 1} \subtitle{Prepared by Mark on \today{}} \begin{document} \maketitle \input{parts/0 sets.tex} \input{parts/1 really big.tex} \input{parts/2 cartesian.tex} \input{parts/3 functions.tex} \input{parts/4 dense.tex} \vfill \pagebreak \section{Bonus Problems} \problem{} Using only sets, how can we build an ordered pair $(a, b)$? \par $(a, b)$ should be equal to $(c, d)$ if and only if $a = b$ and $c = d$. \par Of course, $(a, b) \neq (b, a)$. \begin{solution} $(a, b) = \{ \{a\}, \{a, b\}\}$ \end{solution} \vfill \problem{} Let $R$ be the set of all sets that do not contain themselves. \par Does $R$ exist? \par \hint{If $R$ exists, do we get a contradiction?} \vfill \problem{} Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $h(x) = g(f(x))$ be one-to-one? \par Provide a proof or a counterexample. \vfill \problem{} Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $h(x) = g(f(x))$ be onto? \par Provide a proof or a counterexample. \vfill \pagebreak \end{document}