\section{Equivalence} \generic{Notation:} Let $S$ be a structure and $\varphi$ a formula. \par If $\varphi$ is true in $S$, we write $S \models \varphi$. \par This is read \say{$S$ satisfies $\varphi$} \definition{} Let $S$ and $T$ be structures. \par We say $S$ and $T$ are \textit{equivalent} and write $S \equiv T$ if for any formula $\varphi$, $S \models \varphi \Longleftrightarrow T \models \varphi$. \problem{} Show that $ \Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr) \not\equiv \Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr) $ \vfill \problem{} Show that $ \Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr) \not\equiv \Bigl(\mathbb{N} ~\big|~ \{ +, 0 \}\Bigr) $ \vfill \problem{} Show that $ \Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr) \not\equiv \Bigl(\mathbb{N} ~\big|~ \{ +, 0 \}\Bigr) $ \vfill \problem{} Show that $ \Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr) \not\equiv \Bigl(\mathbb{Z}^2 ~\big|~ \{ +, 0 \}\Bigr) $ \vfill \problem{} Show that $ \Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr) \not\equiv \Bigl(\mathbb{Z}^2 ~\big|~ \{ +, 0 \}\Bigr) $ \begin{solution} All of the above are easy, but the last one can take a while. \par The trick is to notice that $\mathbb{Z}$ has two equivalence classes mod 2, while $\mathbb{Z}^2$ has four. \end{solution} \vfill