\section{Quantum Gates} \definition{} The quantum analog of a logic gate is a \textit{quantum gate,} \par which we'll define as a linear map from $\mathbb{B}^n$ to $\mathbb{B}^n$. \par \note[Note]{This definition is temporary, we'll extend it soon.} \problem{} Consider the CNOT (controlled not) gate. \par When applied to a two-bit state $\ket{ab}$, CNOT inverts $b$ iff $a$ is $\ket{1}$. \par Find the matrix that represents the CNOT gate. \par \hint{what are the dimensions of this matrix?} \begin{solution} \begin{equation*} \text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix} \end{equation*} \vspace{4mm} If $\ket{a}$ is $\ket{0}$, $\ket{a} \otimes \ket{b}$ is $ \begin{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \\ 0 \\ 0 \end{bmatrix} $, and the \say{not} portion of the matrix is ignored. \vspace{4mm} If $\ket{a}$ is $\ket{1}$, $\ket{a} \otimes \ket{b}$ is $ \begin{bmatrix} 0 \\ 0 \\ \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \end{bmatrix} $, and the \say{identity} portion of the matrix is ignored. The state of $\ket{a}$ is always preserved, since it's determined by the position of $\left[\begin{smallmatrix}b_1 \\ b_2\end{smallmatrix}\right]$ in the tensor product. If $\left[\begin{smallmatrix}b_1 \\ b_2\end{smallmatrix}\right]$ is on top, $\ket{a}$ is $\ket{0}$, and if $\left[\begin{smallmatrix}b_1 \\ b_2\end{smallmatrix}\right]$ is on the bottom, $\ket{a}$ is $\ket{1}$. \end{solution} \vfill \problem{} Now, modify the CNOT gate so that it inverts $\ket{a}$ whenever it is applied. \begin{solution} \begin{equation*} \text{CNOT}_{\text{mod}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{equation*} \end{solution} \vfill \pagebreak \iffalse \problem{} Finally, modify the original CNOT gate so that the roles of its bits are reversed: \par $\text{CNOT}_{\text{flip}} \ket{ab}$ should invert $\ket{a}$ iff $\ket{b}$ is $\ket{1}$. \begin{solution} \begin{equation*} \text{CNOT}_{\text{flip}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \end{bmatrix} \end{equation*} \end{solution} \vfill \fi \problem{} The SWAP gate swaps two bits: $\text{SWAP}\ket{ab} = \ket{ba}$. \par Find its matrix. \begin{solution} \begin{equation*} \text{SWAP} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \end{equation*} \end{solution} \vfill \problem{} The $T$ gate is a three-bit gate that inverts its right bit iff its left and middle inputs are both $\ket{1}$. \par In other words, $T\ket{11x} = \ket{11}\ket{\text{not } x}$, and $T\ket{abx} = \ket{abx}$ for all other inputs. \par Find the $T$ gate's matrix. \par \note{ This gate is particularly interesting because it's a \textit{universal quantum gate}: \\ like NOR and NAND in classical logic, any quantum gate may emulated by only applying $T$ gates. } \begin{solution} \begin{equation*} \text{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix} \end{equation*} \end{solution} \vfill \pagebreak The last thing we need is a way to draw complex sequences of gates. \par We already know how to do this with classical gates, \'a la logic circuit: \begin{center} \begin{tikzpicture}[circuit logic US, scale=1.5] \node[and gate] (and) at (0,-0.8) {\tiny\texttt{and}}; \draw ([shift={(-0.5, 0)}] and.input 1) node[left] {\texttt{1}} -- (and.input 1); \draw ([shift={(-0.5, 0)}] and.input 2) node[left] {\texttt{0}} -- (and.input 2); \draw (and.output) -- ([shift={(0.5, 0)}] and.output) node[right] {\texttt{0}}; \end{tikzpicture} \end{center} We draw quantum circuits in a very similar way. \par For example, here a simple three-bit circuit consisting of a CNOT gate on the first bit, \par controlled by the third. The first bit is inverted iff the third bit is $\ket{1}$: \begin{center} \begin{tikzpicture}[scale=1] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{0}$}; \node[qubit] (c) at (0, -2) {$\ket{1}$}; \draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {$\ket{1}$}; \draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {$\ket{0}$}; \draw[wire] (c) -- ([shift={(4, 0)}] c.center) node[qubit] {$\ket{1}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(3,0)}] a)$) -- ($([shift={(1,0)}] c)!0.5!([shift={(3,0)}] c)$) ; \draw[wirejoin] ($([shift={(1,0)}] c)!0.5!([shift={(3,0)}] c)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{3}{CNOT} \end{tikzpicture} \end{center} \problem{} Draw the CNOT gate as a classical logic circuit. \par \hint{This can be done with one gate.} \begin{solution} \begin{center} \begin{tikzpicture}[circuit logic US, scale=2] \node[xor gate] (xor) at (0, 0) {\tiny\texttt{xor}}; \draw (xor.input 1) ++(-0.5, 0) coordinate (start); \draw (xor.input 1) ++(-0.25, 0) coordinate (startjoin); \draw (xor.input 1) -- (xor.input 1 -| start) node[left] {$a$}; \draw (xor.input 2) -| (0,-0.25 -| startjoin) |- (0,-0.25, -| start) node[left] {$b$}; \filldraw (0,-0.25, -| startjoin) circle[radius=0.3mm] coordinate(dot); \draw (dot) -- (dot -| 1,0) node[right] {$b_\text{out}$}; \draw (xor.output) -- (xor.output -| 1,0) node[right] {$a_\text{out}$}; \end{tikzpicture} \end{center} \end{solution} \vfill Gate controls may be marked with a filled circle or an empty circle. \par Empty circles denote \textit{inverse controls,} which (of course) have an inverse effect. \par For example, the two circuits below are identical: \null\hfill \begin{minipage}{0.48\textwidth} \begin{center} \begin{tikzpicture}[scale=1] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{0}$}; \draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[ qubit] {$\ket{a}$}; \draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[ qubit] {$\ket{b}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(3,0)}] a)$) -- ($([shift={(1,0)}] b)!0.5!([shift={(3,0)}] b)$) ; \draw[wireijoin] ($([shift={(1,0)}] b)!0.5!([shift={(3,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{3}{CNOT} \end{tikzpicture} \end{center} \end{minipage} \hfill \begin{minipage}{0.48\textwidth} \begin{center} \begin{tikzpicture}[scale=1] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{0}$}; \draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[ qubit] {$\ket{a}$}; \draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[ qubit] {$\ket{b}$}; \draw[wire] ($([shift={(1.5,0)}] a)!0.5!([shift={(2.5,0)}] a)$) -- ($([shift={(1.5,0)}] b)!0.5!([shift={(2.5,0)}] b)$) ; \draw[wirejoin] ($([shift={(1.5,0)}] b)!0.5!([shift={(2.5,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{3}{CNOT} \qubox{b}{0.5}{b}{1.5}{X} \qubox{b}{2.5}{b}{3.5}{X} \end{tikzpicture} \end{center} \end{minipage} \hfill\null \problem{} What are $\ket{a}$ and $\ket{b}$ in the diagrams above? \begin{solution} \begin{center} \begin{tikzpicture}[scale=1] \node[qubit] (a) at (0, 0) {$\ket{0}$}; \node[qubit] (b) at (0, -1) {$\ket{0}$}; \draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[ qubit] {$\ket{1}$}; \draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[ qubit] {$\ket{0}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(3,0)}] a)$) -- ($([shift={(1,0)}] b)!0.5!([shift={(3,0)}] b)$) ; \draw[wireijoin] ($([shift={(1,0)}] b)!0.5!([shift={(3,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{3}{CNOT} \end{tikzpicture} \end{center} \end{solution} \vfill \pagebreak As we noted before, quantum gates don't \textit{consume} bits, they \textit{transform} them. \par Thus, quantum circuits are drawn with a fixed set of bits, whose states change with time: \par \note[Note]{ In this diagram, CNOT and SWAP are drawn as $\oplus$ and \rotatebox[origin=c]{90}{$\leftrightarrows$} to save space. } \begin{center} \begin{tikzpicture}[scale=1] \node[qubit] (a) at (0, 0) {$\ket{a}$}; \node[qubit] (b) at (0, -1) {$\ket{1}$}; \node[qubit] (c) at (0, -2) {$\ket{c}$}; \node[qubit] (d) at (0, -3) {$\ket{d}$}; \node[qubit] (e) at (0, -4) {$\ket{1}$}; \draw[wire] (a) -- ([shift={(7, 0)}] a.center) node[qubit] {$\ket{0}$}; \draw[wire] (b) -- ([shift={(7, 0)}] b.center) node[qubit] {$\ket{b}$}; \draw[wire] (c) -- ([shift={(7, 0)}] c.center) node[qubit] {$\ket{1}$}; \draw[wire] (d) -- ([shift={(7, 0)}] d.center) node[qubit] {$\ket{0}$}; \draw[wire] (e) -- ([shift={(7, 0)}] e.center) node[qubit] {$\ket{e}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) ; \draw[wirejoin] ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \draw[wireijoin] ($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{2}{T} \qubox{a}{4}{a}{5}{X} \draw[wire] ($([shift={(2,0)}] e)!0.5!([shift={(3,0)}] e)$) -- ($([shift={(2,0)}] d)!0.5!([shift={(3,0)}] d)$) ; \draw[wireijoin] ($([shift={(2,0)}] d)!0.5!([shift={(3,0)}] d)$) circle[radius=0.1] coordinate(dot) ; \qubox{e}{2}{e}{3}{$\oplus$} \qubox{b}{3}{c}{4}{\rotatebox[origin=c]{90}{$\leftrightarrows$}} \draw[wire] ($([shift={(5,0)}] a)!0.5!([shift={(6,0)}] a)$) -- ($([shift={(5,0)}] c)!0.5!([shift={(6,0)}] c)$) ; \draw[wirejoin] ($([shift={(5,0)}] a)!0.5!([shift={(6,0)}] a)$) circle[radius=0.1] coordinate(dot) ; \draw[wirejoin] ($([shift={(5,0)}] c)!0.5!([shift={(6,0)}] c)$) circle[radius=0.1] coordinate(dot) ; \qubox{b}{5}{b}{6}{T} \end{tikzpicture} \end{center} In a quantum circuit, the ONLY way two bits can interact is through a gate. \par We cannot add \say{branches} in quantum circuits like we do in classical circuits: \begin{center} \begin{tikzpicture}[circuit logic US, scale=1.2] \node[xor gate] (xor) at (0, 0) {\tiny\texttt{xor}}; \draw (xor.input 1) ++(-0.5, 0) coordinate (start); \draw (xor.input 1) ++(-0.25, 0) coordinate (startjoin); \draw (xor.input 1) -- (xor.input 1 -| start) node[left] {$x$}; \draw (xor.input 2) -| (0,-0.25 -| startjoin) |- (0,-0.25, -| start) node[left] {$y$}; \filldraw (0,-0.25, -| startjoin) circle[radius=0.3mm] coordinate(dot); \draw (dot) -- (dot -| 1,0) node[right] {$y_\text{out}$}; \draw (xor.output) -- (xor.output -| 1,0) node[right] {$x_\text{out}$}; \draw[->, line width = 1, ogrape] ([shift={(0.3,-0.5)}] dot) node[right] {This is a branch} -| ([shift={(0,-0.2)}] dot) ; \end{tikzpicture} \end{center} \problem{} Find the values of $\ket{a}$ through $\ket{e}$ in the above circuit. \begin{solution} \begin{center} \begin{tikzpicture}[scale=1] \node[qubit] (a) at (0, 0) {$\ket{1}$}; \node[qubit] (b) at (0, -1) {$\ket{1}$}; \node[qubit] (c) at (0, -2) {$\ket{1}$}; \node[qubit] (d) at (0, -3) {$\ket{0}$}; \node[qubit] (e) at (0, -4) {$\ket{1}$}; \draw[wire] (a) -- ([shift={(7, 0)}] a.center) node[ qubit] {$\ket{0}$}; \draw[wire] (b) -- ([shift={(7, 0)}] b.center) node[ qubit] {$\ket{1}$}; \draw[wire] (c) -- ([shift={(7, 0)}] c.center) node[ qubit] {$\ket{1}$}; \draw[wire] (d) -- ([shift={(7, 0)}] d.center) node[ qubit] {$\ket{0}$}; \draw[wire] (e) -- ([shift={(7, 0)}] e.center) node[ qubit] {$\ket{0}$}; \draw[wire] ($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- ($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) ; \draw[wirejoin] ($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) circle[radius=0.1] coordinate(dot) ; \draw[wireijoin] ($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) circle[radius=0.1] coordinate(dot) ; \qubox{a}{1}{a}{2}{T} \qubox{a}{4}{a}{5}{X} \draw[wire] ($([shift={(2,0)}] e)!0.5!([shift={(3,0)}] e)$) -- ($([shift={(2,0)}] d)!0.5!([shift={(3,0)}] d)$) ; \draw[wireijoin] ($([shift={(2,0)}] d)!0.5!([shift={(3,0)}] d)$) circle[radius=0.1] coordinate(dot) ; \qubox{e}{2}{e}{3}{$\oplus$} \qubox{b}{3}{c}{4}{\rotatebox[origin=c]{90}{$\leftrightarrows$}} \draw[wire] ($([shift={(5,0)}] a)!0.5!([shift={(6,0)}] a)$) -- ($([shift={(5,0)}] c)!0.5!([shift={(6,0)}] c)$) ; \draw[wirejoin] ($([shift={(5,0)}] a)!0.5!([shift={(6,0)}] a)$) circle[radius=0.1] coordinate(dot) ; \draw[wirejoin] ($([shift={(5,0)}] c)!0.5!([shift={(6,0)}] c)$) circle[radius=0.1] coordinate(dot) ; \qubox{b}{5}{b}{6}{T} \end{tikzpicture} \end{center} \end{solution} \vfill \pagebreak