\section{Probability} \definition{} A \textit{sample space} is a finite set $\Omega$. \par The elements of this set are called \textit{outcomes}. \par An \textit{event} is a set of outcomes (i.e, a subset of of $\Omega$). \definition{} A \textit{probability function} over a sample space $\Omega$ is a function $\mathcal{P}: P(\Omega) \to [0, 1]$ \par that maps events to real numbers between 0 and 1. \par Any probability function has the following properties: \begin{itemize} \item $\mathcal{P}(\varnothing) = 0$ \item $\mathcal{P}(\Omega) = 1$ \item For events $A$ and $B$ where $A \cap B = \varnothing$, $\mathcal{P}(A \cup B) = \mathcal{P}(A) + \mathcal{P}(B)$ \end{itemize} \problem{} Say we flip a fair coin three times. \par List all elements of the sample space $\Omega$ this experiment generates. \vfill \problem{} Using the same setup as \ref{threecoins}, find the following: \begin{itemize} \item $\mathcal{P}(~ \{\omega \in \Omega ~|~ \omega \text{ has at least two \say{heads}}\} ~)$ \item $\mathcal{P}(~ \{\omega \in \Omega ~|~ \omega \text{ has an odd number of \say{heads}}\} ~)$ \item $\mathcal{P}(~ \{\omega \in \Omega ~|~ \omega \text{ has at least one \say{tails}}\} ~)$ \end{itemize} \vfill \pagebreak % % MARK: Page % \definition{} Given a sample space $\Omega$ and a probability function $\mathcal{P}$, \par a \textit{random variable} is a function from $\Omega$ to a specified output set. \vspace{2mm} For example, given the three-coin-toss sample space $\Omega = \{ \texttt{TTT},~ \texttt{TTH},~ \texttt{THT},~ \texttt{THH},~ \texttt{HTT},~ \texttt{HTH},~ \texttt{HHT},~ \texttt{HHH} \}$, We can define a random variable $\mathcal{H}$ as \say{the number of heads in a throw of three coins}. \par As a function, $\mathcal{H}$ maps values in $\Omega$ to values in $\mathbb{Z}^+_0$ and is defined as: \begin{itemize} \item $\mathcal{H}(\texttt{TTT}) = 0$ \item $\mathcal{H}(\texttt{TTH}) = 1$ \item $\mathcal{H}(\texttt{THT}) = 1$ \item $\mathcal{H}(\texttt{THH}) = 2$ \item ...and so on. \end{itemize} Intuitively, a random variable assigns a \say{value} in $\mathbb{R}$ to every possible outcome. \definition{} We can compute the probability that a random variable takes a certain value by computing the probability of the set of outcomes that produce that value. \par \vspace{2mm} For example, if we wanted to compute $\mathcal{P}(\mathcal{H} = 2)$, we would find $\mathcal{P}\bigl(\{\texttt{THH}, \texttt{HTH}, \texttt{HHT}\}\bigr)$. \problem{} Say we flip a coin with $\mathcal{P}(\texttt{H}) = \nicefrac{1}{3}$ three times. \par What is $\mathcal{P}(\mathcal{H} = 1)$, with $\mathcal{H}$ defined as above? \par What is $\mathcal{P}(\mathcal{H} = 5)$? \vfill \problem{} Say we roll a fair six-sided die twice. \par Let $\mathcal{X}$ be a random variable measuring the sum of the two results. \par Find $\mathcal{P}(\mathcal{X} = x)$ for all $x$ in $\mathbb{Z}$. \vfill \pagebreak % % MARK: Page % \definition{} Say we have a random variable $\mathcal{X}$ that produces outputs in $\mathbb{R}$. \par The \textit{expected value} of $\mathcal{X}$ is then defined as \begin{equation*} \mathcal{E}(\mathcal{X}) ~\coloneqq~ \sum_{x \in \mathbb{R}}\Bigl(x \times \mathcal{P}\bigl(\mathcal{X} = x\bigr)\Bigr) ~=~ \sum_{\omega \in \Omega}\Bigl(\mathcal{X}(\omega) \times \mathcal{P}(\omega)\Bigr) \end{equation*} That is, $\mathcal{E}(\mathcal{X})$ is the average of all possible outputs of $\mathcal{X}$ weighted by their probability. \problem{} Say we flip a coin with $\mathcal{P}(\texttt{H}) = \nicefrac{1}{3}$ two times. \par Define $\mathcal{H}$ as the number of heads we see. \par Find $\mathcal{E}(\mathcal{H})$. \vfill \problem{} Let $\mathcal{A}$ and $\mathcal{B}$ be two random variables. \par Show that $\mathcal{E}(\mathcal{A} + \mathcal{B}) = \mathcal{E}(\mathcal{A}) + \mathcal{E}(\mathcal{B})$. \begin{solution} Use the second definition of $\mathcal{E}$, $\sum_{\omega \in \Omega}\Bigl(\mathcal{X}(\omega) \times \mathcal{P}(\omega)\Bigr)$. \vspace{2mm} Make sure students understand all parts of \ref{defexp}, and are comfortable with the fact that a random variable \say{assigns values} to outcomes. \end{solution} \vfill \definition{} Let $A$ and $B$ be events on a sample space $\Omega$. \par We say that $A$ and $B$ are \textit{independent} if $\mathcal{P}(A \cap B) = \mathcal{P}(A) \times \mathcal{P}(B)$. \par Intuitively, events $A$ and $B$ are independent if the outcome of one does not affect the other. \definition{} Let $\mathcal{A}$ and $\mathcal{B}$ be two random variables over $\Omega$. \par We say that $\mathcal{A}$ and $\mathcal{B}$ are independent if the events $\{\omega \in \Omega ~|~ \mathcal{A}(\omega) = a\}$ and $\{\omega \in \Omega ~|~ \mathcal{B}(\omega) = b\}$ are independent for all $(a, b)$ that $\mathcal{A}$ and $\mathcal{B}$ can produce. \pagebreak