#import "../handout.typ": * #import "../macros.typ": * #import "@preview/cetz:0.3.1" = Tropical Cubic Polynomials #problem() Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \ - sketch a graph of this polynomial - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. #notsolution(graphgrid(none)) #solution([ - Roots are 1, 2, and 3. - $accent(f, macron)(x) = x^3 #tp 1x^2 #tp 3x #tp 6 = (x #tp 1)(x #tp 2)(x #tp 3)$ #graphgrid({ import cetz.draw: * let step = 0.75 dotline((0, 0), (2.66 * step, 8 * step)) dotline((0, 1 * step), (3.5 * step, 8 * step)) dotline((0, 3 * step), (5 * step, 8 * step)) dotline((0, 6 * step), (8 * step, 6 * step)) line( (0, 0), (1 * step, 3 * step), (2 * step, 5 * step), (3 * step, 6 * step), (7.5 * step, 6 * step), stroke: 1mm + oblue, ) }) ]) #v(1fr) #pagebreak() // MARK: page #problem() Consider the polynomial $f(x) = x^3 #tp x^2 #tp 6x #tp 6$. \ - sketch a graph of this polynomial - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. #notsolution(graphgrid(none)) #solution([ - Roots are 1, 2.5, and 2.5. - $accent(f, macron)(x) = x^3 #tp 1x^2 #tp 3.5x #tp 6 = (x #tp 1)(x #tp 2.5)^2$ #graphgrid({ import cetz.draw: * let step = 0.75 dotline((0, 0), (2.66 * step, 8 * step)) dotline((0, 1 * step), (3.5 * step, 8 * step)) dotline((0, 6 * step), (2 * step, 8 * step)) dotline((0, 6 * step), (8 * step, 6 * step)) line( (0, 0), (1 * step, 3 * step), (2.5 * step, 6 * step), (7.5 * step, 6 * step), stroke: 1mm + oblue, ) }) ]) #v(1fr) #problem() Consider the polynomial $f(x) = x^3 #tp 6x^2 #tp 6x #tp 6$. \ - sketch a graph of this polynomial - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. #notsolution(graphgrid(none)) #solution([ - Roots are 2, 2, and 2. - $accent(f, macron)(x) = x^3 #tp 2x^2 #tp 4x #tp 6 = (x #tp 2)^3$ #graphgrid({ import cetz.draw: * let step = 0.75 dotline((0, 0), (2.66 * step, 8 * step)) dotline((0, 6 * step), (1 * step, 8 * step)) dotline((0, 6 * step), (2 * step, 8 * step)) dotline((0, 6 * step), (8 * step, 6 * step)) line( (0, 0), (2 * step, 6 * step), (7.5 * step, 6 * step), stroke: 1mm + oblue, ) }) ]) #v(1fr) #pagebreak() // MARK: page #problem() If $f(x) = a x^3 #tp b x^2 #tp c x #tp d$, then $accent(f, macron)(x) = a x^3 #tp B x^2 #tp C x #tp d$ for some $B$ and $C$. \ Using the last three problems, find formulas for $B$ and $C$ in terms of $a$, $b$, $c$, and $d$. #solution([ $ B = min(b, (a+c)/2, (2a+d)/2) $ $ C = min(c, (b+d)/2, (a+2d)/2) $ ]) #v(1fr) #pagebreak() // MARK: page #problem() What are the roots of the following polynomial? #align( center, box( inset: 3mm, $ 3 x^6 #tp 4 x^5 #tp 2 x^4 #tp x^3 #tp x^2 #tp 4 x #tp 5 $, ), ) #solution([ We have $ accent(f, macron)(x) = 3x^6 #tp 2x^5 #tp 1x^4 #tp x^3 #tp 1x^2 #tp 3x #tp 5 $ which has roots $-1$, $-1$, $-1$, $1$, $2$, $2$ ]) #v(1fr) #pagebreak() // MARK: page #problem() If $ f(x) = c_0 #tp c_1 x #tp c_2 x^2 #tp ... #tp c_n x^n $ then $ accent(f, macron)(x) = c_0 #tp C_1 x #tp C_2 x^2 #tp ... #tp C_(n-1) x^(n-1) #tp c_n x^n $ #v(2mm) Find a formula for each $C_i$ in terms of $c_0, c_1, ..., c_n$. #solution([ $ A_j &= min_(l<=j