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1 Tropical Arithmetic

In tropical arithmetic, we define new addition and multiplication operations on the real numbers.
The tropical sum of two numbers is their minimum:

x⊕ y = min(x, y)

while the tropical product of two numbers is their sum:

x� y = x+ y.

1. Which of the following properties hold in tropical arithmetic?

• Addition is commutative: x⊕ y = y ⊕ x.

True. min(min(x, y), z) = min(x, y, z) = min(x,min(y, z))

• Addition is associative: (x⊕ y)⊕ z = x⊕ (y ⊕ z).

True. min(x, y) = min(y, x)

• An additive identity exists: There exists a real number n such that x⊕ n = x for all real
numbers x.

False. Such an n would satisfy min(x, n) = x or, equivalently, x ≤ n, for all real numbers
x.

2. Let’s expand our number set to include a tropical additive identity. What would be an appro-
priate name for this new “number”? Give appropriate definitions for the tropical sum and tropical
product of this new number with a general real number x and with itself.

Because the tropical additive identity must be greater than or equal to every real number, we
call it infinity (∞). For any real number x, we define

∞⊕ x = x

∞⊕∞ = ∞

∞� x = ∞

∞�∞ = ∞
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3. Which of the following properties hold in tropical arithmetic?

• Additive inverses exist: For each number x, there exists a number y such that x⊕ y = n,
where n is the additive identity.

False. Unless x = ∞, there is no y such that x⊕ y = ∞, i.e., such that min(x, y) = ∞.

• Multiplication is associative: (x� y)� z = x� (y � z).

True. (x+ y) + z = x+ (y + z)

• Multiplication is commutative: x� y = y � x.

True. x+ y = y + x

• There exists a multiplicative identity: There exists a number i such that x� i = x for
all numbers x.

True. The multiplicative identity is 0: x� 0 = x+ 0 = x.

• Multiplicative inverses exist: For each number x not equal to the additive identity, there
exists a number y such that x� y = i, where i is the multiplicative identity.

True. For x 6= ∞, x� (−x) = x+ (−x) = 0.

• Multiplication distributes over addition: x� (y ⊕ z) = x� y ⊕ x� z.

True. x+min(y, z) = min(x+ y, x+ z)

4. Complete the tropical addition and multiplication tables below.

⊕ 1 2 3 4 ∞

1 1 1 1 1 1

2 1 2 2 2 2

3 1 2 3 3 3

4 1 2 3 4 4

∞ 1 2 3 4 ∞

� 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 5

2 2 3 4 5 6

3 3 4 5 6 7

4 4 5 6 7 8
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5. Expand and simplify f(x) = (x⊕2)(x⊕3), where juxtaposition represents tropical multiplication.
Then use your expansion to compute f(1) and f(4).

(x⊕ 2)(x⊕ 3) = x2 ⊕ 2x⊕ 3x⊕ (2� 3)

= x2 ⊕ (2⊕ 3)x⊕ (2� 3)

= x2 ⊕ 2x⊕ 5

f(1) = 12 ⊕ (2� 1)⊕ 5

= 2⊕ 3⊕ 5

= 2

f(4) = 42 ⊕ (2� 4)⊕ 5

= 8⊕ 6⊕ 5

= 5

2 Tropical Polynomials

A polynomial is an expression formed by adding and/or multiplying together numbers and copies
of a variable x. Every polynomial can be written in the form

anx
n + · · ·+ a2x

2 + a1x+ a0

for some nonnegative integer n and coefficients an, . . . , a2, a1, a0.

It follows from the Fundamental Theorem of Algebra that any non-constant polynomial with
real coefficients can be written as a product of polynomials of degree 1 or 2 with real coefficients.
For example,

x5 + 8x4 + 17x3 − 2x2 − 64x− 160 = (x2 + 2x+ 5)(x− 2)(x+ 4)2.

Over the complex numbers, any such polynomial can be factored completely into polynomials of
degree 1 with complex coefficients. For the example above,

x5 + 8x4 + 17x3 − 2x2 − 64x− 160 = (x+ 1− 2i)(x+ 1 + 2i)(x− 2)(x+ 4)2.

The factors can be determined by computing the roots (or the “zeros”) of the polynomial. The
polynomial above has roots

−1 + 2i,−1− 2i, 2,−4,−4.

We say that the root −4 has multiplicity 2.

There is a quadratic formula for determining the roots of a polynomial of degree 2, along with cubic
and quartic formulas for degrees 3 and 4. However, starting with degree 5, there is no longer a nice

3



formula which enables us to find the roots of every polynomial. For polynomials of large degree,
we generally must settle for approximate roots, found by a computer.

A tropical polynomial is an expression formed by (tropically) adding and/or multiplying tropical
numbers (i.e., real numbers or ∞) and copies of a variable x. Every tropical polynomial can be
written in the form

(an � xn)⊕ · · · ⊕ (a2 � x2)⊕ (a1 � x)⊕ (a0)

for some nonnegative integer n and coefficients an, . . . , a2, a1, a0. (Note that the exponents here
represent repeated tropical multiplication.) For convenience, we represent tropical multiplication
by juxtaposition, in the usual manner:

anx
n ⊕ · · · ⊕ a2x

2 ⊕ a1x⊕ a0.

Questions:

• Can tropical polynomials always be factored completely into polynomials of degree 1?

• Is there a tropical quadratic formula for finding the roots of quadratic polynomials? How about
a cubic formula?

• For polynomials of large degree, must we rely on a computer to find roots, or can we do it by
hand?

2.1 Tropical quadratic polynomials

6. Draw a precise graph of the tropical polynomial f(x) = x2 ⊕ 1x ⊕ 4. You may find it helpful
to first rewrite the tropical polynomial (as an expression involving standard operations) using the
definitions of ⊕ and �.

In standard notation,

f(x) = min(2x, 1 + x, 4).

Now, try to factor the tropical polynomial x2⊕1x⊕4 into linear (degree 1) factors. In other words,
find numbers r and s such that

x2 ⊕ 1x⊕ 4 = (x⊕ r)(x⊕ s).
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These numbers r and s are called the roots of the tropical polynomial. (Note that we use x ⊕ r
and x⊕ s because we do not have a tropical subtraction.)

Because (x⊕ r)(x⊕ s) = x2⊕ (r⊕ s)x⊕ rs, we must have r⊕ s = 1 and r� s = 4. In standard
notation, we need min(r, s) = 1 and r + s = 4. We take r = 1 and s = 3:

f(x) = x2 ⊕ 1x⊕ 4 = (x⊕ 1)(x⊕ 3).

Do you notice any relationship between the graph and the factorization? Can you see the roots in
the graph?

The roots 1 and 3 are the x-coordinates of the corners of the graph.

7. Graph f(x) = −2x2 ⊕ x ⊕ 8, and then find a factorization of f(x) in the form a(x ⊕ r)(x ⊕ s).
Can you see the roots r and s in the graph? How are the roots related to the coefficients of f(x)?

We (tropically) factor out a −2 to obtain

f(x) = −2(x2 ⊕ 2x⊕ 10).

Proceeding as in the previous problem, we
obtain

f(x) = −2(x⊕ 2)(x⊕ 8).

The roots 2 and 8 are once again the x-
coordinates of the corners of the graph. The
roots are also the differences between consec-
utive coefficients of f(x):

0− (−2) = 2

8− 0 = 8

8. Find a tropical polynomial f(x) with a value of 7 for all sufficiently large x and with roots 4
and 5.

We are looking for f(x) = ax2 ⊕ bx ⊕ c. We need f(∞) = 7, so the constant term c = 7. In
view of the pattern discovered above, we subtract 5 from the value of c to obtain b = 2, and
we subtract 4 from the value of b to obtain a = −2. We conclude that

f(x) = −2x2 ⊕ 2x⊕ 7.
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Note that it does not work to subtract the roots in the other order. Indeed,

−2x2 ⊕ 3x⊕ 7 6= −2(x⊕ 4)(x⊕ 5).

The polynomial −2x2⊕3x⊕7 does not factor, although it defines the same function as another
polynomial which does factor:

−2(x⊕ 4.5)2 = −2x2 ⊕ 2.5x⊕ 7.

9. Graph f(x) = 1x2 ⊕ 3x ⊕ 5, and then find a factorization in the form f(x) = a(x ⊕ r)(x ⊕ s).
How is this graph different from the previous ones? How is this factorization different from the
others? How are the roots related to the coefficients of f(x)?

The factorization is

1x2 ⊕ 3x⊕ 5 = 1(x⊕ 2)2.

The graphs of the three terms of f(x)
intersect in a single point.

The factorization of f(x) contains a single
linear factor twice, so f(x) has a root of
multiplicity 2. This is explained by the fact
that the differences between consecutive co-
efficients of f(x) are both 2.
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10. Graph f(x) = 2x2 ⊕ 4x⊕ 4. Find a factorization in the form f(x) = a(x⊕ r)(x⊕ s), or show
that one does not exist.

We can factor out a 2 to obtain

f(x) = 2(x2 ⊕ 2x⊕ 2).

However, x2 ⊕ 2x⊕ 2 does not factor. There
are no r and s with minimum 2 and sum 2.

11. Can you find a tropical polynomial which has the same graph as f(x) = 2x2 ⊕ 4x ⊕ 4, but
which can be factored?

The polynomial 2x2 ⊕ 3x⊕ 4 = 2(x⊕ 1)2 has the same graph as f(x).

The Tropical Fundamental Theorem of Algebra says that, for every tropical polynomial f(x),
there is a unique tropical polynomial f̄(x) with the same graph (and therefore determining the same
function) which can be factored into linear factors. We sometimes say “the roots of f(x)” when we
really mean “the roots of f̄(x).”

12. If f(x) = ax2 ⊕ bx⊕ c, then f̄(x) = ax2 ⊕ Bx⊕ c for some B. Find a formula for B in terms
of a, b, and c. There are two different cases to consider.

In order to be able to factor

f(x) = a(x2 ⊕ (b− a)x⊕ (c− a)),

we need to find r and s such that min(r, s) = b − a and r + s = c − a. This is possible if and
only if 2(b− a) ≤ c− a or, equivalently, if b ≤ (a+ c)/2.

Case 1: If b ≤ (a+ c)/2, then f̄(x) = f(x) and B = b.
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Case 2: If b > (a+ c)/2, then

f̄(x) = ax2 ⊕

(

a+ c

2

)

x⊕ c

= a

(

x⊕
c− a

2

)2

has the same graph as f(x), so B = (a+ c)/2.

We can summarize both cases by saying that B = min(b, (a+ c)/2).

13. State a tropical quadratic formula in terms of a, b, c for the roots x of a tropical polynomial
f(x) = ax2 ⊕ bx⊕ c (that is, the roots of the corresponding f̄). There are once again two separate
cases.

Case 1: If b ≤ (a+ c)/2, then f̄(x) = f(x) has roots b− a and c− b, so that

f̄(x) = a(x⊕ (b− a))(x⊕ (c− b)).

Case 2: If b > (a+ c)/2, then f̄(x) has root (c− a)/2, with multiplicity 2, so that

f̄(x) = a

(

x⊕
c− a

2

)2

.

It is interesting to note that the condition 2b < a + c for there to be two distinct roots, when
written in tropical notation, becomes b2 < ac, which is reminiscent of the similar discriminant
condition for standard polynomials.

2.2 Tropical cubic polynomials

14. For each cubic polynomial below,

• sketch the graph of the polynomial,

• use the graph to find the roots of the polynomial, and

• write (and expand) a product of linear factors with the same graph as the given polynomial.
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a) f(x) = x3 ⊕ 1x2 ⊕ 3x⊕ 6

The roots are 1, 2, and 3, yielding a factor-
ization

f̄(x) = (x⊕ 1)(x⊕ 2)(x⊕ 3)

= x3 ⊕ 1x2 ⊕ 3x⊕ 6.

b) g(x) = x3 ⊕ 1x2 ⊕ 6x⊕ 6

The roots are 1, 2.5, and 2.5, yielding a
factorization

f̄(x) = (x⊕ 1)(x⊕ 2.5)2

= x3 ⊕ 1x2 ⊕ 3.5x⊕ 6.
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c) h(x) = x3 ⊕ 6x2 ⊕ 6x⊕ 6

The roots are 2, 2, and 2, yielding a factor-
ization

f̄(x) = (x⊕ 2)3

= x3 ⊕ 2x2 ⊕ 4x⊕ 6.

15. If f(x) = ax3 ⊕ bx2 ⊕ cx ⊕ d, then f̄(x) = ax3 ⊕ Bx2 ⊕ Cx ⊕ d for some B and C. With the
preceding examples as a guide, find formulas for B and C in terms of a, b, c, and d.

B = min

(

b,
a+ c

2
,
2a+ d

3

)

C = min

(

c,
b+ d

2
,
a+ 2d

3

)

2.3 General tropical polynomials

16. Can you guess the roots of the following polynomial?

f(x) = 3x6 ⊕ 4x5 ⊕ 2x4 ⊕ x3 ⊕ 1x2 ⊕ 4x⊕ 5

We have
f̄(x) = 3x6 ⊕ 2x5 ⊕ 1x4 ⊕ x3 ⊕ 1x2 ⊕ 3x⊕ 5,

so the roots are −1,−1,−1, 1, 2, 2.

17. If
f(x) = anx

n ⊕ an−1x
n−1 ⊕ · · · ⊕ a2x

2 ⊕ a1x⊕ a0,

then
f̄(x) = anx

n ⊕An−1x
n−1 ⊕ · · · ⊕A2x

2 ⊕A1x⊕ a0.
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Can you find a formula for each Aj in terms of the ai?

Aj = min
l≤j<k

(

al − ak
k − l

(k − j) + ak

)

= min
l≤j<k

(

al

(

k − j

k − l

)

+ ak

(

j − l

k − l

))

,

an appropriately weighted average of some al and ak, with l ≤ j < k.

How about formulas for the roots r1, r2, . . . , rn?

The roots are simply the differences between consecutive coefficients of f̄(x). That is,

ri = Ai −Ai−1

(where we set An = an and A0 = a0).

Can you find a geometric interpretation of these formulas in terms of the points (−i, ai), for 0 ≤

i ≤ n?

The inequality

Aj ≤
al − ak
k − l

(k − j) + ak

(for l ≤ j < k) states that the point (−j, Aj) must lie on or below the line segment between
the points (−k, ak) and (−l, al). This makes it easy to find the Aj using a graph of the points
(−i, ai) for 0 ≤ i ≤ n.
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