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1 Preliminaries 

In tropical arithmetic, we define new addition and multiplication operations on the real numbers. 

The tropical sum of two numbers is their minimum: 

£@y = min(z, y) 

while the tropical product of two numbers is their sum: 

LOy=rt+y. 

1. Which of the following properties hold in tropical arithmetic? Prove or find a counterexample. 

(“Addition” and “multiplication” below mean tropical addition and tropical multiplication.) 

e Addition is associative: (rx By) 0z =x (y@2z). 

e Addition is commutative: r@y=yO@z. 

e There exists an additive identity: There exists a number n such that r@n = z for all numbers 

x. 

e True. min(min(z, y), z) = min(z, y,z) = min(z, min(y, z)) 

e True. min(z, y) = min(y, z) 

e False. Suppose such an n exists. Then (n+ 1)@n=n¢ (n+l). 

2. What property (in terms of standard arithmetic) would an additive identity n have to satisfy? 

If a number had that property, what would you want to call that “number”? Let’s expand our 

number set to include the real numbers and this new number. How will you define the tropical 

sum and tropical product of this new number with a real number or with itself? 

We need min(z,n) = = for all real numbers x. This means that n must be greater than or equal 
to every real number x. We can think of infinity (oo) as being such a number. We define 

oo ® x = min(oco,r) =z 

co © oo = min(oo, oo) = co 

wOr=o+ r= 

COOWM=WO+WO=0 

3. Which of the following properties hold in tropical arithmetic? Prove or find a counterexample.



e Additive inverses exist: For each number x, there exists a number y such that r @y = n, 

where n is the additive identity. 

e Multiplication is associative: (x © y)Oz=2rO(y@z). 

e Multiplication is commutative: Oy =yOz. 

e There exists a multiplicative identity: There exists a number 7 such that « ©7 = z for all 

numbers 2. 

e Multiplicative inverses exist: For each number z not equal to the additive identity, there 

exists a number y such that x © y = 7, where i is the multiplicative identity. 

e Multiplication distributes over addition: © (y®z)=rOy@rOz. 

e False. Unless x = 00, there is no y such that x @ y = oo, ie., such that min(z,y) = oo. 

e True. (c+y)+z2=2+(y+2) 

e True. r+y=yt+2 

e True. The multiplicative identity is 0: rO0=x+0=2. 

e True. For x #00, © (—z) = 4+ (—2) =0. 

e True. x + min(y, z) = min(x#+y,2+ z) 

4. Complete the tropical addition and multiplication tables below. In the blank spaces in the 

header rows and columns, write the appropriate (additive or multiplicative) identities: 
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5. Expand (zr @y) and (« @y)*. Can you simplify the resulting expressions? (Are all of the terms 
in the expansions necessary?)



We expand, representing tropical multiplication by juxtaposition: 

(r@yP =2*Ooryoyrey =r Oryey =2' ey 

(ceyr=xerryeoryoy=c oy 

These are called the “freshman’s dream” formulas. The final equals sign in the first line is 

justified by the inequalities x + y > 27 or r+ y > 2y. Similarly for the final equals sign in the 

second line. 

A shorter proof of (z @ y)” = x” @ y” proceeds as follows: 

n-min(z, y) = min(n-z,n-y). 

2 Tropical Polynomials 

It follows from the Fundamental Theorem of Algebra that any non-constant polynomial with 

real coefficients can be written as a product of polynomials of degree 1 or 2 with real coefficients. 

For example, 

a + 8x4 + 172° — 2x? — 64a — 160 = (x? + Qe + 5)(x — 2)(x + 4)”. 

Over the complex numbers, any such polynomial can be factored completely into polynomials of 

degree 1 with complex coefficients. For the example above, 

ao + 82 + 172° — 22? — 642 — 160 = (a +: 1 — 2i)(a4 +: 1 + 2%) (2 — 2)(x + 4)”. 

The factors can be determined by computing the roots (or the “zeros”) of the polynomial. The 

polynomial above has roots 

—1+ 2i, -1 — 2i, 2, —4, —4. 

We say that the root —4 has multiplicity 2. There is a quadratic formula for determining the roots 

of a polynomial of degree 2, as well as cubic and quartic formulas for degrees 3 and 4. However, 

starting with degree 5, there is no longer a nice formula which enables us to find the roots of every 

polynomial. For polynomials of large degree, we generally must settle for approximate roots, found 

by a computer. 

A tropical polynomial is an expression formed by (tropically) adding and/or multiplying tropical 
numbers (i.e. real numbers or oo) and a variable x. A tropical polynomial can be written in the 

form 

(an © 2") @-+- @ (ag © x”) @ (a1 © 2) @ (ag). 

For convenience, we represent tropical multiplication by juxtaposition, in the usual manner: 

Ant” @-+: Bagu? Oaz OB ag. 

Does the Fundamental Theorem of Algebra (or something close to it) hold for tropical polynomials? 

Is there a tropical quadratic formula for finding the roots of quadratic polynomials? What about 

a cubic formula? For polynomials of large degree, must we rely on a computer to find roots and 

factor, or can we do it ourselves?!



2.1 Tropical quadratic functions 

6. Draw a precise graph of the tropical polynomial function f(r) = xz? @ 1x @ 4. You may find it 

helpful to first rewrite the tropical polynomial (into an expression involving standard operations) 

using the definitions of @ and ©. Now, try to factor the tropical polynomial x? @ 1x @ 4 into linear 

(degree 1) factors, i.e. 
a’? @12@4=(x£Or)(xOs). 

The numbers r and s are called the roots of the tropical polynomial. Note that we use ® because 

we do not have a tropical subtraction. Do you notice any relationship between the graph and the 

factorization? Can you see the roots in the graph? 

In standard terms, f(x) = min(2z,1+ 2,4). See graph paper for the graph. 

Note that 
(x @r\(x@s) = 27 O(r@s)x G (rs). 

In order for this to equal x? @ 1x @ 4, we must have min(r,s) = 1 andr+s=4. We taker =1 

and s = 3: 
f(z) =2? @1r @4= (x O1)(z O 3). 

The roots are the x-values of the corners of the graph. 

7. Repeat problem 6 for the tropical polynomial function f(x) = —2x7@z8, but with factorization 

of the form a(x @r)(z @ s). Can you see the roots r,s in the graph? How are the roots related to 

the coefficients of f(x)? 

We first factor out —2: f(x) = —2(x? @ 22 @ 10). Proceeding as in 6, we obtain 

f(x) = —2(x @ 2) (x @ 8). 

Note that the roots are the differences between consecutive coefficients: 2 = 0—(—2), 8 = 8—0. 

8. Can you find a tropical polynomial function f(x) with a value of 7 for all sufficiently large x and 

with roots of 4 and 5? 

We are looking for f(x) = ax* @ br @c. We need f(co) = 7, so the constant term c = 7. We 

subtract 5 to get b = 2 and then 4 to get a = —2: 

f(x) = 2a? © 2x © 7. 

Note that it does not work to subtract the roots in the other order: indeed, 

22? © 3a ©7 F -2(x © 4) (x @S). 

The polynomial —2z7@3207 does not factor algebraically, although it defines the same function 

as —2(x @ 4.5)? = —22? © 2.54 @ 7. 

9. Repeat problem 6 for the tropical polynomial function f(x) = 1x? @ 32 @ 5. How is this graph



different from the others? How is this factorization different from the others? How are the roots 

related to the coefficients of f(x)? 

All three lines involved in the graph intersect at the same point. The factorization contains the 

same factor twice 

f(x) = 12? @ 32 @5 = (x @ 2)”. 

This polynomial has a double root at x = 2. 

10. Repeat problem 6 for the tropical polynomial function f(x) = 227 @ 4z @ 4. What happens? 

We can factor out a 2: f(x) = 2(x* @ 2x @ 2). However, the polynomial does not factor into 

linear factors. There are no numbers r,s which have a minimum of 2 and a sum of 2. 

11. Can you find a tropical polynomial which determines the same graph as f(x) = 227 @ 42 @ 4, 

but which can be factored? 

The graph of f(z) looks like it has a double root at x = 1, so we guess that g(x) = 2(z@ 1)? has 
the same graph as f(x) (and defines the same function). Expanding, we get g(x) = 227 632 04. 

The Tropical Fundamental Theorem of Algebra says that for every tropical polynomial f(z), 

there is a unique tropical polynomial f(x) with the same graph (or determining the same function) 

which can be factored into linear factors. We sometimes say “the roots of f(x)” to mean “the roots 

of f(x)”. 

12. If f(z) = az? @ bz @c, can you find a formula for f(z)? There are two different cases. (Hint: 

When does f(x) = f(x)?) 

In order to factor f(z) = a(z?@(b—a)x@(c—a)), we need to find r,s such that min(r, s) = b—a 
and r+ s=c-—a. This can be done if and only if b—a < S%, orb < $4. 

Case 1: b < “44. In this case, f = f. 

Case 2: b > S44. In this case, the linear term bz does not contribute to the value of f(z). We 
see from the graph that f(x) has a double root at the x for which a+ 22 =c, or x = (c—a)/2. 

Thus f(z) =a(x@ oa)? 

13. State a tropical quadratic formula in terms of a,b,c for the roots x of a polynomial function 

f(x) = az? @ br @c. There are once again two separate cases. 

Case 1: b < S44. Reasoning as above, we have f(x) = f(x) with roots z = (c—a)~—(b—a) =c—b 
and + = b—a. 

Case 2: b > oe, As shown above, r = 55% is a double root. 



2.2 Tropical cubic functions 

15. Consider the cubic polynomial functions 

f(iz)=22@ 2? O1ze3 

g(t) = 2° @12* @1lr@2 

h(x) = x? @ 32? © 32 63. 

For each function, 

e Sketch the graph. 

e Use the graph to find the roots. 

e Write a product of linear factors which has the same graph as the given polynomial. Expand 

the product to obtain f(x), 9(z),h(x). Which of the original polynomials are themselves 

factorable? 

Using the graphs, we find the following roots: 

f(z) =(r# @0)(e# @1\(x#@2)=2°6 x? @1r@3 

(c)=(4@0.5)*(e@1) =2° 60.527 @1r 2 g 
h(x) = (x @ 1)3 =2@® 12° @2r03 

16. Consider a general tropical cubic function f(r) = ax*® @ bz? @ cz Gd. With the preceding 
examples as a guide, can you find a method for obtaining the factorable polynomial f(x) (and 

thereby obtaining the roots of f) directly from the coefficients a, b, c,d, without drawing the graph 

of f(x)? (If you need a hint, you may find it helpful to draw the points (0, a), (1, b), (2,c), (3, d) on 

a coordinate plane and to consider line segments between these points.) 

In order for a polynomial f(z) = ax? © bx? @ cx @ d to be factorable, no point among 

(0, a), (1,6), (2,c), (3,d) may lie below a line segment connecting two others. We lower these 
points as necessary until they lie on a sort of convex hull of the original points. The resulting 

polynomial is f(z). 

17. Consider f(x) = 6x’ @ 82° © 22° © 2x* © 6x? G 6x? © 7x GG. Test your method from 16 by 
finding f(x) (without drawing the graph of f(x)). What are the roots of f(x)? 

Applying the observation from 16, we find that 

f(z) = 62’ 6 42° © 22° @ 22* © 327 @ 4a” @ 5 O6 

= (« © -2)"(« 60)(z @ 1)’, 

so that f has roots of —2,0,1, with respective multiplicities of 2, 1, 4. 


