\section{Paths and cycles} A \textit{path} in a graph is, intuitively, a sequence of edges: $(x_1, x_2, x_4, ... )$. \par I've highlighted one possible path in the graph below. \begin{center} \begin{tikzpicture}[ node distance={15mm}, thick, main/.style = {draw, circle} ] \node[main] (1) {$x_1$}; \node[main] (2) [above right of=1] {$x_2$}; \node[main] (3) [below right of=1] {$x_3$}; \node[main] (4) [above right of=3] {$x_4$}; \node[main] (5) [above right of=4] {$x_5$}; \node[main] (6) [below right of=4] {$x_6$}; \node[main] (7) [below right of=5] {$x_7$}; \draw[-] (1) -- (2); \draw[-] (1) -- (3); \draw[-] (2) -- (5); \draw[-] (2) -- (4); \draw[-] (3) -- (6); \draw[-] (3) -- (4); \draw[-] (4) -- (5); \draw[-] (5) -- (7); \draw[-] (6) -- (7); \draw [ line width=2mm, draw=black, opacity=0.4 ] (1) -- (2) -- (4) -- (3) -- (6); \end{tikzpicture} \end{center} A \textit{cycle} is a path that starts and ends on the same vertex: \begin{center} \begin{tikzpicture}[ node distance={15mm}, thick, main/.style = {draw, circle} ] \node[main] (1) {$x_1$}; \node[main] (2) [above right of=1] {$x_2$}; \node[main] (3) [below right of=1] {$x_3$}; \node[main] (4) [above right of=3] {$x_4$}; \node[main] (5) [above right of=4] {$x_5$}; \node[main] (6) [below right of=4] {$x_6$}; \node[main] (7) [below right of=5] {$x_7$}; \draw[-] (1) -- (2); \draw[-] (1) -- (3); \draw[-] (2) -- (5); \draw[-] (2) -- (4); \draw[-] (3) -- (6); \draw[-] (3) -- (4); \draw[-] (4) -- (5); \draw[-] (5) -- (7); \draw[-] (6) -- (7); \draw[ line width=2mm, draw=black, opacity=0.4 ] (2) -- (4) -- (3) -- (6) -- (7) -- (5) -- (2); \end{tikzpicture} \end{center} A \textit{Eulerian\footnotemark} path is a path that traverses each edge exactly once. \par A Eulerian cycle is a cycle that does the same. \footnotetext{Pronounced ``oiler-ian''. These terms are named after a Swiss mathematician, Leonhard Euler (1707-1783), who is usually considered the founder of graph theory.} \vspace{2mm} Similarly, a {\it Hamiltonian} path is a path in a graph that visits each vertex exactly once, \par and a Hamiltonian cycle is a closed Hamiltonian path. \medskip An example of a Hamiltonian path is below. \begin{center} \begin{tikzpicture}[ node distance={15mm}, thick, main/.style = {draw, circle} ] \node[main] (1) {$x_1$}; \node[main] (2) [above right of=1] {$x_2$}; \node[main] (3) [below right of=1] {$x_3$}; \node[main] (4) [above right of=3] {$x_4$}; \node[main] (5) [above right of=4] {$x_5$}; \node[main] (6) [below right of=4] {$x_6$}; \node[main] (7) [below right of=5] {$x_7$}; \draw[-] (1) -- (2); \draw[-] (1) -- (3); \draw[-] (2) -- (5); \draw[-] (2) -- (4); \draw[-] (3) -- (6); \draw[-] (3) -- (4); \draw[-] (4) -- (5); \draw[-] (5) -- (7); \draw[-] (6) -- (7); \draw [ line width=2mm, draw=black, opacity=0.4 ] (1) -- (2) -- (4) -- (3) -- (6) -- (7) -- (5); \end{tikzpicture} \end{center} \vfill \pagebreak \definition{} We say a graph is \textit{connected} if there is a path between every pair of vertices. A graph is called \textit{disconnected} otherwise. \problem{} Draw a disconnected graph with four vertices. \par Then, draw a graph with four vertices, all of degree one. \vfill \problem{} Find a Hamiltonian cycle in the following graph. \begin{center} \begin{tikzpicture}[ node distance={20mm}, thick, main/.style = {draw, circle} ] \node[main] (1) {$x_1$}; \node[main] (2) [above right of=1] {$x_2$}; \node[main] (3) [below right of=1] {$x_3$}; \node[main] (4) [above right of=3] {$x_4$}; \node[main] (5) [above right of=4] {$x_5$}; \node[main] (6) [below right of=4] {$x_6$}; \node[main] (7) [below right of=5] {$x_7$}; \draw[-] (1) -- (2); \draw[-] (1) -- (3); \draw[-] (2) -- (5); \draw[-] (2) -- (4); \draw[-] (3) -- (6); \draw[-] (3) -- (4); \draw[-] (4) -- (5); \draw[-] (5) -- (7); \draw[-] (6) -- (7); \end{tikzpicture} \end{center} \vfill \pagebreak \problem{} Is there an Eulerian path in the following graph? \par \begin{center} \begin{tikzpicture}[ node distance={20mm}, thick, main/.style = {draw, circle} ] \node[main] (1) {$x_1$}; \node[main] (2) [above right of=1] {$x_2$}; \node[main] (3) [below right of=1] {$x_3$}; \node[main] (4) [above right of=3] {$x_4$}; \node[main] (5) [above right of=4] {$x_5$}; \node[main] (6) [below right of=4] {$x_6$}; \node[main] (7) [below right of=5] {$x_7$}; \draw[-] (1) -- (2); \draw[-] (1) -- (3); \draw[-] (2) -- (5); \draw[-] (2) -- (4); \draw[-] (3) -- (6); \draw[-] (3) -- (4); \draw[-] (4) -- (5); \draw[-] (5) -- (7); \draw[-] (6) -- (7); \end{tikzpicture} \end{center} \vfill \problem{} Is there an Eulerian path in the following graph? \par \begin{center} \begin{tikzpicture}[ node distance={20mm}, thick, main/.style = {draw, circle} ] \node[main] (1) {$x_1$}; \node[main] (2) [above right of=1] {$x_2$}; \node[main] (3) [below right of=1] {$x_3$}; \node[main] (4) [above right of=3] {$x_4$}; \node[main] (5) [above right of=4] {$x_5$}; \node[main] (6) [below right of=4] {$x_6$}; \node[main] (7) [below right of=5] {$x_7$}; \draw[-] (1) -- (2); \draw[-] (1) -- (3); \draw[-] (2) -- (4); \draw[-] (3) -- (6); \draw[-] (3) -- (4); \draw[-] (4) -- (5); \draw[-] (5) -- (7); \draw[-] (6) -- (7); \end{tikzpicture} \end{center} \vfill \problem{} When does an Eulerian path exist? \par \hint{Look at the degree of each node.} \vfill \pagebreak