\section{Approximation} \definition{} Say we have a bit string $x$. \par Let $x_f$ denote the value of $x$ interpreted as a float, \par and let $x_i$ denote the value of $x$ interpreted as an integer. \problem{} Let $x = \texttt{0b01000001\_01001000\_00000000\_00000000}$. \ What are $x_f$ and $x_i$? \begin{solution} $x_f = 12.5$ \par \vspace{2mm} $x_i = 2^{30} + 2^{24} + 2^{22} + 2^{19} = 11,095,237,632$ \end{solution} \generic{Observation:} For small values of $a$, $\log_2(1 + a)$ is approximately equal to $a$. \par Note that this equality is exact for $a = 0$ and $a = 1$, since $\log_2(1) = 0$ and $\log_2(2) = 1$. \vspace{2mm} We'll add a \say{correction term} $\varepsilon$ to this approximation, so that $\log_2(1 + a) \approx a + \varepsilon$. TODO: why? Graphs. \problem{} Use the fact that $\log_2(1 + a) \approx a + \varepsilon$ to approximate $\log_2(x_f)$ in terms of $x_i$, \par \begin{solution} Let $E$ and $F$ be the exponent and float bits of $x_f$. \par We then have: \begin{align*} \log_2(x_f) &=~ \log_2 \left( 2^{E-127} \times \left(1 + \frac{F}{2^{23}}\right) \right) \\ &=~ E-127 + \log_2\left(1 + \frac{F}{2^{23}}\right) \\ &\approx~ E-127 + \frac{F}{2^{23}} + \varepsilon \\ &=~ \frac{1}{2^{23}}(2^{23}E + F) - 127 + \varepsilon \\ &=~ \frac{1}{2^{23}}(x_i) - 127 + \varepsilon \end{align*} \end{solution} \vfill \pagebreak