\section{Line Graphs} \problem{} Given a graph $G$, we can construct its \textit{line graph} (denoted $\mathcal{L}(G)$) by doing the following: \par \begin{itemize} \item Creating a node in $\mathcal{L}(G)$ for each edge in $G$ \item Drawing a directed edge between every pair of nodes $a, b$ in $\mathcal{L}(G)$ \par if the corresponding edges in $G$ are adjacent. \par \note{That is, if edge $b$ in $G$ starts at the node at which $a$ ends.} \end{itemize} \problem{} Draw the line graph for the graph below. \par Have an instructor check your solution. \begin{center} \begin{tikzpicture} \begin{scope}[layer = nodes] \node[main] (a) at (0, 0) {$a$}; \node[main] (b) at (2, 0) {$b$}; \node[main] (c) at (4, 0) {$c$}; \end{scope} \draw[->] (a) edge[bend left] node[label] {$0$} (b) (b) edge[bend left] node[label] {$1$} (a) (b) edge[bend left] node[label] {$2$} (c) (c) edge[bend left] node[label] {$3$} (b) (c) edge[loop right] node[label] {$4$} (c) ; \end{tikzpicture} \end{center} \begin{solution} \begin{center} \begin{tikzpicture} \begin{scope}[layer = nodes] \node[main] (0) at (0, 0) {$0$}; \node[main] (1) at (2, -4) {$1$}; \node[main] (2) at (0, -2) {$2$}; \node[main] (3) at (2, -2) {$3$}; \node[main] (4) at (2, 0) {$4$}; \end{scope} \draw[->] (0) edge[bend left] (2) (2) edge[bend left] (0) (0) edge (4) (4) edge[bend left] (2) (2) edge (1) (1) edge[bend left] (3) (3) edge[bend left] (1) (3) edge (0) ; \end{tikzpicture} \end{center} \end{solution} \vfill \definition{} We say a graph $G$ is \textit{connected} if there is a path between any two vertices of $G$. \problem{} Show that if $G$ is connected, $\mathcal{L}(G)$ is connected. \begin{solution} Let $a, b$ and $x, y$ be nodes in a connected graph $G$ so that an edges $a \rightarrow b$ and and $x \rightarrow y$ exist. Since $G$ is connected, we can find a path from $b$ to $x$. The path $a$ to $y$ corresponds to a path in $\mathcal{L}(G)$ between $a \rightarrow b$ and $x \rightarrow y$. \end{solution} \vfill \pagebreak \definition{} Consider $\mathcal{L}(G_n)$, where $G_n$ is the $n^\text{th}$ order De Bruijn graph. \par \vspace{2mm} We'll need to label the vertices of $\mathcal{L}(G_n)$. To do this, do the following: \begin{itemize} \item Let $a$ and $b$ be nodes in $G_n$ \item Let \texttt{x} be the first letter of $a$ \item Let \texttt{y}, the last letter of $b$ \item Let $\overline{\texttt{p}}$ be the prefix/suffix that $a$ and $b$ share. \par Note that $a = \texttt{x}\overline{\texttt{p}}$ and $b = \overline{\texttt{p}}\texttt{y}$, \end{itemize} Now, relabel the edge from $a$ to $b$ as $\texttt{x}\overline{\texttt{p}}\texttt{y}$. \par Use these new labels to name nodes in $\mathcal{L}(G_n)$. \problem{} Construct $\mathcal{L}(G_2)$ and $\mathcal{L}(G_3)$. What do you notice? \begin{solution} After fixing edge labels, we find that $\mathcal{L}(G_2) \cong G_3$, and $\mathcal{L}(G_3) \cong G_4$ \end{solution}