\section{The Euclidean Algorithm} \definition{} The \textit{greatest common divisor} of $a$ and $b$ is the greatest integer that divides both $a$ and $b$. \par We denote this number with $\gcd(a, b)$. For example, $\gcd(45, 60) = 15$. \problem{} Find $\gcd(20, 14)$ by hand. \begin{solution} $\gcd(20, 14) = 2$ \end{solution} \vfill \theorem{The Division Algorithm} Given two integers $a, b$, we can find two integers $q, r$, where $0 \leq r < b$ and $a = qb + r$. \par In other words, we can divide $a$ by $b$ to get $q$ remainder $r$. \vspace{2mm} For example, take $14 \div 3$. We can re-write this as $3 \times 4 + 2$. \par Here, $a$ and $b$ are $14$ and $3$, $q = 4$ and $r = 2$. \theorem{} For any integers $a, b, c$, \par $\gcd(ac + b, a) = \gcd(a, b)$ \problem{} Compute $\gcd(668, 6)$ \hint{$668 = 111 \times 6 + 2$} Then, compute $\gcd(3 \times 668 + 6, 668)$. \vfill \problem{The Euclidean Algorithm} Using the two theorems above, detail an algorithm for finding $\gcd(a, b)$. \par Then, compute $\gcd(1610, 207)$ by hand. \par \begin{solution} Using \ref{gcd_abc} and the division algorthm, % Minipage prevents column breaks inside body \begin{multicols}{2} \begin{minipage}{\columnwidth} $\gcd(1610, 207)$ \par $= \gcd(207, 161)$ \par $= \gcd(161, 46)$ \par $= \gcd(46, 23)$ \par $= \gcd(23, 0) = 23$ \par \end{minipage} \columnbreak \begin{minipage}{\columnwidth} $1610 = 207 \times 7 + 161$ \par $207 = 161 \times 1 + 46$ \par $161 = 46 \times 3 + 23$ \par $46 = 23 \times 2 + 0$ \par \end{minipage} \end{multicols} \end{solution} \vfill \pagebreak