Convert warm-ups to typst #2

Merged
Mark merged 19 commits from warmups into main 2025-01-24 22:41:36 -08:00
2 changed files with 111 additions and 132 deletions
Showing only changes of commit 9ab33f47b3 - Show all commits

View File

@ -1,132 +0,0 @@
\documentclass[
nosolutions,
hidewarning,
singlenumbering,
nopagenumber
]{../../../lib/tex/ormc_handout}
\usepackage{../../../lib/tex/macros}
\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\usetikzlibrary{shapes.geometric}
% We put nodes in a separate layer, so we can
% slightly overlap with paths for a perfect fit
\pgfdeclarelayer{nodes}
\pgfdeclarelayer{path}
\pgfsetlayers{main,nodes}
% Layer settings
\tikzset{
% Layer hack, lets us write
% later = * in scopes.
layer/.style = {
execute at begin scope={\pgfonlayer{#1}},
execute at end scope={\endpgfonlayer}
},
%
% Arrowhead tweak
>={Latex[ width=2mm, length=2mm ]},
%
% Nodes
main/.style = {
draw,
circle,
fill = white,
line width = 0.35mm
}
}
\title{Warm Up: Odd Dice}
\uptitler{\smallurl{}}
\subtitle{Prepared by Mark on \today}
\begin{document}
\maketitle
\problem{}
We say a set of dice $\{A, B, C\}$ is \textit{nontransitive}
if, on average, $A$ beats $B$, $B$ beats $C$, and $C$ beats $A$.
In other words, we get a counterintuitive \say{rock - paper - scissors} effect.
\vspace{2mm}
Create a set of nontransitive six-sided dice. \par
\hint{All sides should be numbered with positive integers less than 10.}
\begin{solution}
One possible set can be numbered as follows:
\begin{itemize}
\item Die $A$: $2, 2, 4, 4, 9, 9$
\item Die $B$: $1, 1, 6, 6, 8, 8$
\item Die $C$: $3, 3, 5, 5, 7, 7$
\end{itemize}
\vspace{4mm}
Another solution is below:
\begin{itemize}
\item Die $A$: $3, 3, 3, 3, 3, 6$
\item Die $B$: $2, 2, 2, 5, 5, 5$
\item Die $C$: $1, 4, 4, 4, 4, 4$
\end{itemize}
\end{solution}
\vfill
\problem{}
Now, consider the set of six-sided dice below:
\begin{itemize}
\item Die $A$: $4, 4, 4, 4, 4, 9$
\item Die $B$: $3, 3, 3, 3, 8, 8$
\item Die $C$: $2, 2, 2, 7, 7, 7$
\item Die $D$: $1, 1, 6, 6, 6, 6$
\item Die $E$: $0, 5, 5, 5, 5, 5$
\end{itemize}
On average, which die beats each of the others? Draw a graph. \par
\begin{solution}
\begin{center}
\begin{tikzpicture}[scale = 0.5]
\begin{scope}[layer = nodes]
\node[main] (a) at (-2, 0.2) {$a$};
\node[main] (b) at (0, 2) {$b$};
\node[main] (c) at (2, 0.2) {$c$};
\node[main] (d) at (1, -2) {$d$};
\node[main] (e) at (-1, -2) {$e$};
\end{scope}
\draw[->]
(a) edge (b)
(b) edge (c)
(c) edge (d)
(d) edge (e)
(e) edge (a)
(a) edge (c)
(b) edge (d)
(c) edge (e)
(d) edge (a)
(e) edge (b)
;
\end{tikzpicture}
\end{center}
\end{solution}
\vfill
Now, say we roll each die twice. What happens to the graph above?
\begin{solution}
The direction of each edge is reversed!
\end{solution}
\vfill
\pagebreak
\end{document}

View File

@ -0,0 +1,111 @@
#import "@local/handout:0.1.0": *
#import "@preview/cetz:0.3.1"
#show: handout.with(
title: [Warm-Up: Odd Dice],
by: "Mark",
)
#problem()
We say a set of dice ${A, B, C}$ is _nontransitive_
if, on average, $A$ beats $B$, $B$ beats $C$, and $C$ beats $A$.
In other words, we get a counterintuitive "rock - paper - scissors" effect.
#v(2mm)
Create a set of nontransitive six-sided dice. \
#hint([All sides should be numbered with positive integers less than 10.])
#solution([
One possible set can be numbered as follows:
- Die $A$: $2, 2, 4, 4, 9, 9$
- Die $B$: $1, 1, 6, 6, 8, 8$
- Die $C$: $3, 3, 5, 5, 7, 7$
#v(2mm)
Another solution is below:
- Die $A$: $3, 3, 3, 3, 3, 6$
- Die $B$: $2, 2, 2, 5, 5, 5$
- Die $C$: $1, 4, 4, 4, 4, 4$
])
#v(1fr)
#problem()
Now, consider the set of six-sided dice below:
- Die $A$: $4, 4, 4, 4, 4, 9$
- Die $B$: $3, 3, 3, 3, 8, 8$
- Die $C$: $2, 2, 2, 7, 7, 7$
- Die $D$: $1, 1, 6, 6, 6, 6$
- Die $E$: $0, 5, 5, 5, 5, 5$
On average, which die beats each of the others? Draw a diagram.
#solution(
align(
center,
cetz.canvas({
import cetz.draw: *
let s = 0.8 // Scale
let t = 13pt * s // text size
let radius = 0.3 * s
// Points
let a = (-2 * s, 0.2 * s)
let b = (0 * s, 2 * s)
let c = (2 * s, 0.2 * s)
let d = (1.2 * s, -2.1 * s)
let e = (-1.2 * s, -2.1 * s)
set-style(
stroke: (thickness: 0.6mm * s),
mark: (
end: (
symbol: ">",
fill: black,
offset: radius + (0.025 * s),
width: 1.2mm * s,
length: 1.2mm * s,
),
),
)
line(a, b)
line(b, c)
line(c, d)
line(d, e)
line(e, a)
line(a, c)
line(b, d)
line(c, e)
line(d, a)
line(e, b)
circle(a, radius: radius, fill: oblue, stroke: none)
circle(b, radius: radius, fill: oblue, stroke: none)
circle(c, radius: radius, fill: oblue, stroke: none)
circle(d, radius: radius, fill: oblue, stroke: none)
circle(e, radius: radius, fill: oblue, stroke: none)
content(a, text(fill: white, size: t, [*A*]))
content(b, text(fill: white, size: t, [*B*]))
content(c, text(fill: white, size: t, [*C*]))
content(d, text(fill: white, size: t, [*D*]))
content(e, text(fill: white, size: t, [*E*]))
}),
),
)
#v(1fr)
#problem()
Now, say we roll each die twice. What happens to the graph from the previous problem?
#solution([
The direction of each edge is reversed!
])
#v(1fr)