Compare commits
7 Commits
e689af6106
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 2de7ee0c22 | |||
| dbe44d9797 | |||
| af2d065cb6 | |||
| 664f2218c0 | |||
| 1b17553891 | |||
| d4e08c3a25 | |||
| e9a8441a7b |
@@ -1,7 +1,7 @@
|
|||||||
% use [nosolutions] flag to hide solutions.
|
% use [nosolutions] flag to hide solutions.
|
||||||
% use [solutions] flag to show solutions.
|
% use [solutions] flag to show solutions.
|
||||||
\documentclass[
|
\documentclass[
|
||||||
solutions,
|
%solutions,
|
||||||
singlenumbering
|
singlenumbering
|
||||||
]{../../../lib/tex/handout}
|
]{../../../lib/tex/handout}
|
||||||
\usepackage{../../../lib/tex/macros}
|
\usepackage{../../../lib/tex/macros}
|
||||||
@@ -19,4 +19,5 @@
|
|||||||
\input{parts/01 fibonacci.tex}
|
\input{parts/01 fibonacci.tex}
|
||||||
\input{parts/02 dice.tex}
|
\input{parts/02 dice.tex}
|
||||||
\input{parts/03 coins.tex}
|
\input{parts/03 coins.tex}
|
||||||
|
\input{parts/04 bonus.tex}
|
||||||
\end{document}
|
\end{document}
|
||||||
@@ -77,7 +77,7 @@ A \textit{rational function} $f$ is a function that can be written as a quotient
|
|||||||
That is, $f(x) = \frac{p(x)}{q(x)}$ where $p$ and $q$ are polynomials.
|
That is, $f(x) = \frac{p(x)}{q(x)}$ where $p$ and $q$ are polynomials.
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Solve the equation from \ref<fibo> for $F(x)$, expressing it as a rational function.
|
Solve the equation from \ref{fibo} for $F(x)$, expressing it as a rational function.
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
@@ -99,8 +99,8 @@ Solve the equation from \ref<fibo> for $F(x)$, expressing it as a rational funct
|
|||||||
|
|
||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
\textit{Partial fraction decomposition} is an algebreic technique that works as follows: \par
|
\textit{Partial fraction decomposition} is an algebraic technique that works as follows: \par
|
||||||
If $p(x)$ is a polynomial and $a$ and $b$ are constants,
|
If $p(x)$ is a polynomial of degree 1 and $a$ and $b$ are constants,
|
||||||
we can rewrite the rational function $\frac{p(x)}{(x-a)(x-b)}$ as follows:
|
we can rewrite the rational function $\frac{p(x)}{(x-a)(x-b)}$ as follows:
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
\frac{p(x)}{(x-a)(x-b)} = \frac{c}{x-a} + \frac{d}{x-b}
|
\frac{p(x)}{(x-a)(x-b)} = \frac{c}{x-a} + \frac{d}{x-b}
|
||||||
@@ -131,7 +131,7 @@ find a closed-form expression for its coefficients using partial fraction decomp
|
|||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Using problems from the introduction and \ref{pfd}, find an expression
|
Using problems from the introduction and \ref{pfd}, find an expression
|
||||||
for the coefficients of $F(x)$ (and this, for the Fibonacci numbers).
|
for the coefficients of $F(x)$ (and thus, for the Fibonacci numbers).
|
||||||
|
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
|
|||||||
@@ -76,7 +76,7 @@ the probability that the sum of the two dice is $k$.
|
|||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Using generating functions, find two six-sided dice whose sum has the same
|
Using generating functions, find two six-sided dice whose sum has the same
|
||||||
distribution as the sum of two standard six-sided dice? \par
|
distribution as the sum of two standard six-sided dice. \par
|
||||||
|
|
||||||
That is, for any integer $k$, the number if ways that the sum of the two
|
That is, for any integer $k$, the number if ways that the sum of the two
|
||||||
nonstandard dice rolls as $k$ is equal to the number of ways the sum of
|
nonstandard dice rolls as $k$ is equal to the number of ways the sum of
|
||||||
|
|||||||
@@ -9,7 +9,7 @@ using pennies, nickels, dimes, quarters and half-dollars?}
|
|||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
Most ways of solving this involve awkward brute-force
|
Most ways of solving this involve awkward brute-force
|
||||||
approache that don't reveal anything interesting about the problem:
|
approaches that don't reveal anything interesting about the problem:
|
||||||
how can we change our answer if we want to make change for
|
how can we change our answer if we want to make change for
|
||||||
\$0.51, or \$1.05, or some other quantity?
|
\$0.51, or \$1.05, or some other quantity?
|
||||||
|
|
||||||
|
|||||||
57
src/Advanced/Generating Functions/parts/04 bonus.tex
Executable file
57
src/Advanced/Generating Functions/parts/04 bonus.tex
Executable file
@@ -0,0 +1,57 @@
|
|||||||
|
\section{Extra Problems}
|
||||||
|
|
||||||
|
|
||||||
|
\problem{USAMO 1996 Problem 6}
|
||||||
|
Determine (with proof) whether there is a subset $X$ of
|
||||||
|
the nonnegative integers with the following property: for any nonnegative integer $n$ there is exactly
|
||||||
|
one solution of $a + 2b = n$ with $a, b \in X$.
|
||||||
|
(The original USAMO question asked about all integers, not just nonnegative - this is harder,
|
||||||
|
but still approachable with generating functions.)
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{IMO Shortlist 1998}
|
||||||
|
Let $a_0, a_1, ...$ be an increasing sequence of nonnegative integers
|
||||||
|
such that every nonnegative integer can be
|
||||||
|
expressed uniquely in the form $a_i + 2a_j + 4a_k$,
|
||||||
|
where $i, j, k$ are not necessarily distinct.
|
||||||
|
|
||||||
|
Determine $a_1998$.
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{USAMO 1986 Problem 5}
|
||||||
|
By a partition $\pi$ of an integer $n \geq 1$, we mean here a
|
||||||
|
representation of $n$ as a sum of one or more positive integers where the summands must be put in
|
||||||
|
nondecreasing order. (e.g., if $n = 4$, then the partitions $\pi$ are
|
||||||
|
$1 + 1 + 1 + 1$, $1 + 1 + 2$, $1 + 3, 2 + 2$, and $4$).
|
||||||
|
|
||||||
|
|
||||||
|
For any partition $\pi$, define $A(\pi)$ to be the number of ones which appear in $\pi$, and define $B(\pi)$
|
||||||
|
to be the number of distinct integers which appear in $\pi$ (e.g, if $n = 13$ and $\pi$ is the partition
|
||||||
|
$1 + 1 + 2 + 2 + 2 + 5$, then $A(\pi) = 2$ and $B(\pi) = 3$).
|
||||||
|
|
||||||
|
Show that for any fixed $n$, the sum of $A(\pi)$ over all partitions of $\pi$ of $n$ is equal to the sum of
|
||||||
|
$B(\pi)$ over all partitions of $\pi$ of $n$.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{USAMO 2017 Problem 2}
|
||||||
|
Let $m_1, m_2, ..., m_n$ be a collection of $n$ distinct positive
|
||||||
|
integers. For any sequence of integers $A = (a_1, ..., a_n)$ and any permutation $w = w_1, ..., w_n$ of
|
||||||
|
$m_1, ..., m_n$, define an $A$-inversion of $w$ to be a pair of entries $w_i, w_j$ with $i < j$ for which one of the
|
||||||
|
following conditions holds:
|
||||||
|
\begin{itemize}
|
||||||
|
\item $ai \geq wi > wj$
|
||||||
|
\item $wj > ai \geq wi$
|
||||||
|
\item $wi > wj > ai$
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
Show that for any two sequences of integers $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$ and for any
|
||||||
|
positive integer $k$, the number of permutations of $m_1, ..., m_n$ having exactly $k$ $A$-inversions is equal
|
||||||
|
to the number of permutations of $m_1, ..., m_n$ having exactly $k$ $B$-inversions.
|
||||||
|
(The original USAMO problem allowed the numbers $m_1, ..., m_n$ to not necessarily be distinct.)
|
||||||
|
|
||||||
|
\vfill
|
||||||
@@ -81,5 +81,6 @@
|
|||||||
\input{parts/00 intro}
|
\input{parts/00 intro}
|
||||||
\input{parts/01 tmam}
|
\input{parts/01 tmam}
|
||||||
\input{parts/02 kestrel}
|
\input{parts/02 kestrel}
|
||||||
|
\input{parts/03 bonus}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
@@ -23,7 +23,7 @@ Complete his proof.
|
|||||||
\lineno{} let A \cmnt{Let A be any any bird.}
|
\lineno{} let A \cmnt{Let A be any any bird.}
|
||||||
\lineno{} let Cx = A(Mx) \cmnt{Define C as the composition of A and M}
|
\lineno{} let Cx = A(Mx) \cmnt{Define C as the composition of A and M}
|
||||||
\lineno{} CC = A(MC)
|
\lineno{} CC = A(MC)
|
||||||
\lineno{} = A(CC) \qed{}
|
\lineno{} = A(CC)
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@@ -46,7 +46,7 @@ Show that the laws of the forest guarantee that at least one bird is egocentric.
|
|||||||
\lineno{}
|
\lineno{}
|
||||||
\lineno{} ME = E \cmnt{By definition of fondness}
|
\lineno{} ME = E \cmnt{By definition of fondness}
|
||||||
\lineno{} ME = EE \cmnt{By definition of M}
|
\lineno{} ME = EE \cmnt{By definition of M}
|
||||||
\lineno{} \thus{} EE = E \qed{}
|
\lineno{} \thus{} EE = E
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@@ -99,7 +99,7 @@ Show that if $C$ is agreeable, $A$ is agreeable.
|
|||||||
\lineno{} let y so that Cy = Ey \cmnt{Such a y must exist because C is agreeable}
|
\lineno{} let y so that Cy = Ey \cmnt{Such a y must exist because C is agreeable}
|
||||||
\lineno{}
|
\lineno{}
|
||||||
\lineno{} A(By) = Ey
|
\lineno{} A(By) = Ey
|
||||||
\lineno{} = D(By) \qed{}
|
\lineno{} = D(By)
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@@ -129,6 +129,20 @@ Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$
|
|||||||
We say two birds $A$ and $B$ are \textit{compatible} if there are birds $x$ and $y$ so that $Ax = y$ and $By = x$. \\
|
We say two birds $A$ and $B$ are \textit{compatible} if there are birds $x$ and $y$ so that $Ax = y$ and $By = x$. \\
|
||||||
Note that $x$ and $y$ may be the same bird. \\
|
Note that $x$ and $y$ may be the same bird. \\
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that any bird that is fond of at least one bird is compatible with itself.
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{alltt}
|
||||||
|
\lineno{} let A
|
||||||
|
\lineno{} let x so that Ax = x \cmnt{A is fond of at least one other bird}
|
||||||
|
\lineno{} Ax = x
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Show that any two birds in this forest are compatible. \\
|
Show that any two birds in this forest are compatible. \\
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
@@ -144,7 +158,6 @@ Show that any two birds in this forest are compatible. \\
|
|||||||
\begin{solution}
|
\begin{solution}
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\lineno{} let A, B
|
\lineno{} let A, B
|
||||||
\lineno{}
|
|
||||||
\lineno{} let Cx = A(Bx) \cmnt{Composition}
|
\lineno{} let Cx = A(Bx) \cmnt{Composition}
|
||||||
\lineno{} let y = Cy \cmnt{Let C be fond of y}
|
\lineno{} let y = Cy \cmnt{Let C be fond of y}
|
||||||
\lineno{}
|
\lineno{}
|
||||||
@@ -152,24 +165,9 @@ Show that any two birds in this forest are compatible. \\
|
|||||||
\lineno{} = A(By)
|
\lineno{} = A(By)
|
||||||
\lineno{}
|
\lineno{}
|
||||||
\lineno{} let x = By \cmnt{Rename By to x}
|
\lineno{} let x = By \cmnt{Rename By to x}
|
||||||
\lineno{} Ax = y \qed{}
|
\lineno{} Ax = y
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Show that any bird that is fond of at least one bird is compatible with itself.
|
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
\begin{alltt}
|
|
||||||
\lineno{} let A
|
|
||||||
\lineno{} let x so that Ax = x \cmnt{A is fond of at least one other bird}
|
|
||||||
\lineno{} Ax = x \qed{}
|
|
||||||
\end{alltt}
|
|
||||||
|
|
||||||
That's it.
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
@@ -18,7 +18,7 @@ Say $A$ is fixated on $B$. Is $A$ fond of $B$?
|
|||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\lineno{} let A
|
\lineno{} let A
|
||||||
\lineno{} let B so that Ax = B
|
\lineno{} let B so that Ax = B
|
||||||
\lineno{} \thus{} AB = B \qed{}
|
\lineno{} \thus{} AB = B
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
\vfill
|
\vfill
|
||||||
@@ -39,7 +39,7 @@ Show that an egocentric Kestrel is hopelessly egocentric.
|
|||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\lineno{} KK = K
|
\lineno{} KK = K
|
||||||
\lineno{} \thus{} (KK)y = K \cmnt{By definition of the Kestrel}
|
\lineno{} \thus{} (KK)y = K \cmnt{By definition of the Kestrel}
|
||||||
\lineno{} \thus{} Ky = K \qed{} \cmnt{By 01}
|
\lineno{} \thus{} Ky = K \cmnt{By 01}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@@ -64,7 +64,7 @@ Given the Law of Composition and the Law of the Mockingbird, show that at least
|
|||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\lineno{} let A so that KA = A \cmnt{Any bird is fond of at least one bird}
|
\lineno{} let A so that KA = A \cmnt{Any bird is fond of at least one bird}
|
||||||
\lineno{} (KA)y = y \cmnt{By definition of the kestrel}
|
\lineno{} (KA)y = y \cmnt{By definition of the kestrel}
|
||||||
\lineno{} \thus{} Ay = A \qed{} \cmnt{By 01}
|
\lineno{} \thus{} Ay = A \cmnt{By 01}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@@ -90,7 +90,7 @@ Show that $Kx = Ky \implies x = y$.
|
|||||||
\lineno{} (Kx)z = x
|
\lineno{} (Kx)z = x
|
||||||
\lineno{} (Ky)z = y
|
\lineno{} (Ky)z = y
|
||||||
\lineno{}
|
\lineno{}
|
||||||
\lineno{} \thus{} x = (Kx)z = (Ky)z = y \qed{}
|
\lineno{} \thus{} x = (Kx)z = (Ky)z = y
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@@ -128,7 +128,7 @@ An egocentric Kestrel must be extremely lonely. Why is this?
|
|||||||
\lineno{} Ky = K
|
\lineno{} Ky = K
|
||||||
\lineno{} Kx = Ky
|
\lineno{} Kx = Ky
|
||||||
\lineno{} x = y for all x, y \cmnt{By \ref{leftcancel}}
|
\lineno{} x = y for all x, y \cmnt{By \ref{leftcancel}}
|
||||||
\lineno{} x = y = K \qed{} \cmnt{By 10, and since K exists}
|
\lineno{} x = y = K \cmnt{By 10, and since K exists}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
|
|||||||
102
src/Advanced/Mock a Mockingbird/parts/03 bonus.tex
Normal file
102
src/Advanced/Mock a Mockingbird/parts/03 bonus.tex
Normal file
@@ -0,0 +1,102 @@
|
|||||||
|
\section{Bonus Problems}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
The identity bird has sometimes been maligned, owing to
|
||||||
|
the fact that whatever bird x you call to $I$, all $I$ does is to echo
|
||||||
|
$x$ back to you.
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
Superficially, the bird $I$ appears to have no intelligence or imagination; all it can do is repeat what it hears.
|
||||||
|
For this reason, in the past, thoughtless students of ornithology
|
||||||
|
referred to it as the idiot bird. However, a more profound or-
|
||||||
|
nithologist once studied the situation in great depth and dis-
|
||||||
|
covered that the identity bird is in fact highly intelligent! The
|
||||||
|
real reason for its apparently unimaginative behavior is that it
|
||||||
|
has an unusually large heart and hence is fond of every bird!
|
||||||
|
When you call $x$ to $I$, the reason it responds by calling back $x$
|
||||||
|
is not that it can't think of anything else; it's just that it wants
|
||||||
|
you to know that it is fond of $x$!
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
Since an identity bird is fond of every bird, then it is also
|
||||||
|
fond of itself, so every identity bird is egocentric. However,
|
||||||
|
its egocentricity doesn't mean that it is any more fond of itself
|
||||||
|
than of any other bird!.
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
The laws of the forest no longer apply.
|
||||||
|
|
||||||
|
Suppose we are told that the forest contains an identity bird
|
||||||
|
$I$ and that $I$ is agreeable. \
|
||||||
|
Does it follow that every bird must be fond of at least one bird?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Suppose we are told that there is an identity bird $I$ and that
|
||||||
|
every bird is fond of at least one bird. \
|
||||||
|
Does it necessarily follow that $I$ is agreeable?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Suppose we are told that there is an identity bird $I$, but we are
|
||||||
|
not told whether $I$ is agreeable or not.
|
||||||
|
|
||||||
|
However, we are told that every pair of birds is compatible. \
|
||||||
|
Which of the following conclusiens can be validly drawn?
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Every bird is fond of at least one bird
|
||||||
|
\item $I$ is agreeable.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
The identity bird $I$, though egocentric, is in general not hope-
|
||||||
|
lessly egocentric. Indeed, if there were a hopelessly egocentric
|
||||||
|
identity bird, the situation would be quite sad. Why?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
A bird $L$ is called a lark if the following
|
||||||
|
holds for any birds $x$ and $y$:
|
||||||
|
|
||||||
|
\[
|
||||||
|
(Lx)y = x(yy)
|
||||||
|
\]
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Prove that if the forest contains a lark $L$ and an identity bird
|
||||||
|
$I$, then it must also contain a mockingbird $M$.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Why is a hopelessly egocentric lark unusually attractive?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Assuming that no bird can be both a lark and a kestrel---as
|
||||||
|
any ornithologist knows!---prove that it is impossible for a
|
||||||
|
lark to be fond of a kestrel.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
It might happen, however, that a kestrel is fond of a lark. \par
|
||||||
|
Show that in this case, \textit{every} bird is fond of the lark.
|
||||||
|
|
||||||
|
\vfill
|
||||||
11
src/Warm-Ups/Bugs/main.typ
Normal file
11
src/Warm-Ups/Bugs/main.typ
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
#import "@local/handout:0.1.0": *
|
||||||
|
|
||||||
|
#show: handout.with(
|
||||||
|
title: [Warm-Up: Bugs on a Log],
|
||||||
|
by: "Mark",
|
||||||
|
)
|
||||||
|
|
||||||
|
#problem()
|
||||||
|
2013 bugs are on a meter-long line. Each walks to the left or right at a constant speed. \
|
||||||
|
If two bugs meet, both turn around and continue walking in opposite directions. \
|
||||||
|
What is the longest time it could take for all the bugs to walk off the end of the log?
|
||||||
6
src/Warm-Ups/Bugs/meta.toml
Normal file
6
src/Warm-Ups/Bugs/meta.toml
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
[metadata]
|
||||||
|
title = "Bugs on a Log"
|
||||||
|
|
||||||
|
[publish]
|
||||||
|
handout = true
|
||||||
|
solutions = true
|
||||||
Reference in New Issue
Block a user