Compare commits
2 Commits
attributio
...
bed4fd2766
Author | SHA1 | Date | |
---|---|---|---|
bed4fd2766
|
|||
b9751385d1 |
@ -1,3 +0,0 @@
|
|||||||
[authors."mark"]
|
|
||||||
email = "mark@betalupi.com"
|
|
||||||
webpage = "betalupi.com"
|
|
@ -137,7 +137,11 @@
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#let notsolution(content) = {
|
#let if_solutions(content) = {
|
||||||
|
if show_solutions { content }
|
||||||
|
}
|
||||||
|
|
||||||
|
#let if_no_solutions(content) = {
|
||||||
if not show_solutions { content }
|
if not show_solutions { content }
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -126,7 +126,7 @@ Fill the following tropical addition and multiplication tables
|
|||||||
|
|
||||||
#let col = 10mm
|
#let col = 10mm
|
||||||
|
|
||||||
#notsolution(
|
#if_no_solutions(
|
||||||
table(
|
table(
|
||||||
columns: (1fr, 1fr),
|
columns: (1fr, 1fr),
|
||||||
align: center,
|
align: center,
|
||||||
|
@ -63,7 +63,7 @@ where all exponents represent repeated tropical multiplication.
|
|||||||
Draw a graph of the tropical polynomial $f(x) = x^2 #tp 1x #tp 4$. \
|
Draw a graph of the tropical polynomial $f(x) = x^2 #tp 1x #tp 4$. \
|
||||||
#hint([$1x$ is not equal to $x$.])
|
#hint([$1x$ is not equal to $x$.])
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
$f(x) = min(2x , 1+x, 4)$, which looks like:
|
$f(x) = min(2x , 1+x, 4)$, which looks like:
|
||||||
@ -132,7 +132,7 @@ How can we use the graph to determine these roots?
|
|||||||
Graph $f(x) = -2x^2 #tp x #tp 8$. \
|
Graph $f(x) = -2x^2 #tp x #tp 8$. \
|
||||||
#hint([Use half scale. 1 box = 2 units.])
|
#hint([Use half scale. 1 box = 2 units.])
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
#graphgrid({
|
#graphgrid({
|
||||||
@ -210,7 +210,7 @@ and always produces $7$ for sufficiently large inputs.
|
|||||||
#problem()
|
#problem()
|
||||||
Graph $f(x) = 1x^2 #tp 3x #tp 5$.
|
Graph $f(x) = 1x^2 #tp 3x #tp 5$.
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
The graphs of all three terms intersect at the same point:
|
The graphs of all three terms intersect at the same point:
|
||||||
@ -261,7 +261,7 @@ How are the roots of $f$ related to its coefficients?
|
|||||||
#problem()
|
#problem()
|
||||||
Graph $f(x) = 2x^2 #tp 4x #tp 4$.
|
Graph $f(x) = 2x^2 #tp 4x #tp 4$.
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution(
|
#solution(
|
||||||
graphgrid({
|
graphgrid({
|
||||||
|
@ -10,7 +10,7 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \
|
|||||||
- use this graph to find the roots of $f$
|
- use this graph to find the roots of $f$
|
||||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
- Roots are 1, 2, and 3.
|
- Roots are 1, 2, and 3.
|
||||||
@ -48,7 +48,7 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 6x #tp 6$. \
|
|||||||
- use this graph to find the roots of $f$
|
- use this graph to find the roots of $f$
|
||||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
- Roots are 1, 2.5, and 2.5.
|
- Roots are 1, 2.5, and 2.5.
|
||||||
@ -82,7 +82,7 @@ Consider the polynomial $f(x) = x^3 #tp 6x^2 #tp 6x #tp 6$. \
|
|||||||
- use this graph to find the roots of $f$
|
- use this graph to find the roots of $f$
|
||||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
- Roots are 2, 2, and 2.
|
- Roots are 2, 2, and 2.
|
||||||
|
@ -4,8 +4,3 @@ title = "Odd Dice"
|
|||||||
[publish]
|
[publish]
|
||||||
handout = true
|
handout = true
|
||||||
solutions = true
|
solutions = true
|
||||||
|
|
||||||
[[attribution]]
|
|
||||||
who = "mark"
|
|
||||||
when = 2024-02-13
|
|
||||||
what = "Initial version of handout"
|
|
||||||
|
81
src/Warm-Ups/Somewhat Random Numbers/main.typ
Normal file
81
src/Warm-Ups/Somewhat Random Numbers/main.typ
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
#import "@local/handout:0.1.0": *
|
||||||
|
|
||||||
|
#show: doc => handout(
|
||||||
|
doc,
|
||||||
|
quarter: link(
|
||||||
|
"https://betalupi.com/handouts",
|
||||||
|
"betalupi.com/handouts",
|
||||||
|
),
|
||||||
|
|
||||||
|
title: [Somewhat Random Numbers],
|
||||||
|
by: "Mark",
|
||||||
|
)
|
||||||
|
|
||||||
|
#problem()
|
||||||
|
Alice generates 100 random numbers uniformly from $[0,1]$. \
|
||||||
|
Bob generates 101 random numbers from $[0, 1]$, but deletes the lowest result.
|
||||||
|
|
||||||
|
#v(2mm)
|
||||||
|
|
||||||
|
Say we have both of the resulting arrays, but do not know who generated each one. \
|
||||||
|
We would like to guess which of the two was generated by Bob. \
|
||||||
|
What is the optimal strategy, and what is its probability of guessing correctly?
|
||||||
|
|
||||||
|
|
||||||
|
#solution([
|
||||||
|
Looking at the mean seems like a good idea, but there's a better way: \
|
||||||
|
Assign the array with the smaller _minimum_ to Alice.
|
||||||
|
|
||||||
|
#v(3mm)
|
||||||
|
|
||||||
|
To compute the probability, generate 201 numbers. \
|
||||||
|
Assign the first 100 to Alice and the rest to Bob. \
|
||||||
|
Look at the lowest two numbers (of these 201, *before* Bob drops his lowest).
|
||||||
|
|
||||||
|
#v(8mm)
|
||||||
|
|
||||||
|
We'll use the following notation: \
|
||||||
|
`AB` means the lowest was owned by Alice, and the second-lowest, by Bob.
|
||||||
|
|
||||||
|
#v(2mm)
|
||||||
|
|
||||||
|
Probabilities are as follows: \
|
||||||
|
- `AA`: $100\/201 times 99\/200 approx 0.246$
|
||||||
|
- `AB`: $100\/201 times 101\/200 approx 0.251$
|
||||||
|
- `BA`: $101\/201 times 100\/200 approx 0.251$ // spell:disable-line
|
||||||
|
- `BB`: $101\/201 times 100\/200 approx 0.251$
|
||||||
|
|
||||||
|
#v(4mm)
|
||||||
|
Now, Bob drops his lowest number. \
|
||||||
|
We'll cross out the number he drops and box the new lowest number (i.e, the one we observe):
|
||||||
|
- #{
|
||||||
|
(
|
||||||
|
box(`A`, stroke: ored, inset: 1pt)
|
||||||
|
+ box(`A`, inset: 1pt)
|
||||||
|
+ box([: $approx 0.246$], inset: (top: 1pt, bottom: 1pt))
|
||||||
|
)
|
||||||
|
}
|
||||||
|
- #{
|
||||||
|
(
|
||||||
|
box(`A`, stroke: ored, inset: 1pt)
|
||||||
|
+ box(strike(`B`), inset: 1pt)
|
||||||
|
+ box([: $approx 0.251$], inset: (top: 1pt, bottom: 1pt))
|
||||||
|
)
|
||||||
|
}
|
||||||
|
- #{
|
||||||
|
(
|
||||||
|
box(strike(`B`), inset: 1pt)
|
||||||
|
+ box(`A`, stroke: ored, inset: 1pt)
|
||||||
|
+ box([: $approx 0.251$], inset: (top: 1pt, bottom: 1pt))
|
||||||
|
)
|
||||||
|
}
|
||||||
|
- #{
|
||||||
|
(
|
||||||
|
box(`B`, stroke: ored, inset: 1pt)
|
||||||
|
+ box(strike(`B`), inset: 1pt)
|
||||||
|
+ box([: $approx 0.251$], inset: (top: 1pt, bottom: 1pt))
|
||||||
|
)
|
||||||
|
}
|
||||||
|
#v(8mm)
|
||||||
|
Alice has the smallest number in 3 of 4 cases, which have a total probability of $approx 0.749$.
|
||||||
|
])
|
6
src/Warm-Ups/Somewhat Random Numbers/meta.toml
Normal file
6
src/Warm-Ups/Somewhat Random Numbers/meta.toml
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
[metadata]
|
||||||
|
title = "Somewhat Random Numbers"
|
||||||
|
|
||||||
|
[publish]
|
||||||
|
handout = true
|
||||||
|
solutions = true
|
Reference in New Issue
Block a user