Compare commits
1 Commits
902ea69d94
...
bcccf0334c
Author | SHA1 | Date | |
---|---|---|---|
bcccf0334c |
@ -1,7 +1,8 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions
|
||||
solutions,
|
||||
shortwarning
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
@ -1,14 +1,5 @@
|
||||
\section{Logarithms}
|
||||
|
||||
\definition{}<logdef>
|
||||
The \textit{logarithm} is the inverse of the exponent. That is, if $b^p = c$, then $\log_b{c} = p$. \\
|
||||
In other words, $\log_b{c}$ asks the question ``what power do I need to raise $b$ to to get $c$?'' \\
|
||||
|
||||
\medskip
|
||||
|
||||
In both $b^p$ and $\log_b{c}$, the number $b$ is called the \textit{base}.
|
||||
|
||||
|
||||
\problem{}
|
||||
Evaluate the following by hand:
|
||||
|
||||
@ -25,61 +16,28 @@ Evaluate the following by hand:
|
||||
\vfill
|
||||
\end{enumerate}
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
\definition{}
|
||||
There are a few ways to write logarithms:
|
||||
\begin{itemize}
|
||||
\item[] $\log{x} = \log_{10}{x}$
|
||||
\item[] $\lg{x} = \log_{10}{x}$
|
||||
\item[] $\ln{x} = \log_e{x}$
|
||||
\end{itemize}
|
||||
|
||||
\definition{}
|
||||
The \textit{domain} of a function is the set of values it can take as inputs. \\
|
||||
The \textit{range} of a function is the set of values it can produce.
|
||||
|
||||
\medskip
|
||||
|
||||
For example, the domain and range of $f(x) = x$ is $\mathbb{R}$, all real numbers. \\
|
||||
The domain of $f(x) = |x|$ is $\mathbb{R}$, and its range is $\mathbb{R}^+ \cup \{0\}$, all positive real numbers and 0. \\
|
||||
|
||||
\medskip
|
||||
|
||||
Note that the domain and range of a function are not always equal.
|
||||
|
||||
\problem{}<expdomain>
|
||||
What is the domain of $f(x) = 5^x$? \\
|
||||
What is the range of $f(x) = 5^x$?
|
||||
\vfill
|
||||
|
||||
\problem{}<logdomain>
|
||||
What is the domain of $f(x) = \log{x}$? \\
|
||||
What is the range of $f(x) = \log{x}$?
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}<logids>
|
||||
Prove the following identities: \\
|
||||
Prove the following:
|
||||
|
||||
\begin{enumerate}[itemsep=2mm]
|
||||
\item $\log_b{(b^x)} = x$
|
||||
\vfill
|
||||
\item $b^{\log_b{x}} = x$
|
||||
\vfill
|
||||
\item $\log_b{(xy)} = \log_b{(x)} + \log_b{(y)}$
|
||||
\vfill
|
||||
\item $\log_b{(\frac{x}{y})} = \log_b{(x)} - \log_b{(y)}$
|
||||
\vfill
|
||||
\item $\log_b{(x^y)} = y \log_b{(x)}$
|
||||
\vfill
|
||||
\end{enumerate}
|
||||
|
||||
\vfill
|
||||
|
||||
\begin{instructornote}
|
||||
A good intro to the following sections is the linear slide rule:
|
||||
|
||||
\note{Note that these rules start at 0.}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\begin{tikzpicture}[scale=0.6]
|
||||
\linearscale{2}{1}{}
|
||||
\linearscale{0}{0}{}
|
||||
|
||||
@ -90,10 +48,8 @@ Prove the following identities: \\
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Take two linear rulers, offset one, and you add. \\
|
||||
If you do the same with a log scale, you multiply! \\
|
||||
\vspace{1ex}
|
||||
Note that the slide rules above start at 0.
|
||||
Take two linear rules, offset one, and you add.
|
||||
Do the same with a log scale, and you multiply! \\
|
||||
|
||||
\linehack{}
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
\section{Introduction}
|
||||
|
||||
Mathematicians, physicists, and engineers needed to quickly solve complex equations even before computers were invented.
|
||||
Mathematicians, physicists, and engineers needed to quickly compute products long before computers conquered the world.
|
||||
|
||||
\medskip
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user