Compare commits
8 Commits
3bfaf915cf
...
46d44f41de
Author | SHA1 | Date | |
---|---|---|---|
46d44f41de | |||
2b621c94cf | |||
c417bdc6cf | |||
c2c7b28647 | |||
c27c875d98 | |||
cd72817bdf | |||
20e0c1a545 | |||
57cd8d63a8 |
1
.gitignore
vendored
1
.gitignore
vendored
@ -3,6 +3,7 @@ venv
|
||||
__pycache__
|
||||
*.ignore
|
||||
.mypy_cache
|
||||
.DS_Store
|
||||
|
||||
# Output files
|
||||
/output
|
||||
|
@ -1,18 +1,3 @@
|
||||
% Copyright (C) 2023 Mark (mark@betalupi.com)
|
||||
%
|
||||
% This program is free software: you can redistribute it and/or modify
|
||||
% it under the terms of the GNU General Public License as published by
|
||||
% the Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% This program is distributed in the hope that it will be useful,
|
||||
% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
% GNU General Public License for more details.
|
||||
%
|
||||
% You should have received a copy of the GNU General Public License
|
||||
% along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
\NeedsTeXFormat{LaTeX2e}
|
||||
\ProvidesClass{../../../lib/tex/ormc_handout}[2023/05/29 2.0.2 ORMC Handout]
|
||||
|
||||
|
@ -44,6 +44,14 @@
|
||||
by = text(size: 10pt, [Prepared by #by on #date])
|
||||
}
|
||||
|
||||
let sub = ()
|
||||
if (by != none) {
|
||||
sub.push(by)
|
||||
}
|
||||
if (subtitle != none) {
|
||||
sub.push(subtitle)
|
||||
}
|
||||
|
||||
// Main title
|
||||
align(
|
||||
center,
|
||||
@ -61,8 +69,7 @@
|
||||
// Title
|
||||
text(size: 20pt, title),
|
||||
// Subtitle
|
||||
if (by != none) { text(size: 10pt, by) },
|
||||
if (subtitle != none) { text(size: 10pt, subtitle) },
|
||||
..sub,
|
||||
line(length: 100%, stroke: 0.2mm),
|
||||
),
|
||||
),
|
||||
|
@ -3,8 +3,14 @@
|
||||
// Re-exports
|
||||
// All functions that maybe used by client code are listed here
|
||||
#import "misc.typ": *
|
||||
#import "object.typ": problem, definition, theorem
|
||||
#import "solution.typ": if_solutions, if_no_solutions, solution
|
||||
#import "object.typ": problem, definition, theorem, example, remark, generic
|
||||
#import "solution.typ": (
|
||||
if_solutions,
|
||||
if_no_solutions,
|
||||
if_solutions_else,
|
||||
solution,
|
||||
instructornote,
|
||||
)
|
||||
|
||||
|
||||
/// Main handout wrapper.
|
||||
|
@ -98,3 +98,11 @@
|
||||
#let theorem = _mkobj("Theorem")
|
||||
#let example = _mkobj("Example")
|
||||
#let remark = _mkobj("Remark")
|
||||
|
||||
#let generic(obj_content) = {
|
||||
block(
|
||||
above: 8mm,
|
||||
below: 2mm,
|
||||
text(weight: "bold", obj_content),
|
||||
)
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
#import "misc.typ": ored
|
||||
#import "misc.typ": ored, oblue
|
||||
|
||||
/// If false, hide instructor info.
|
||||
///
|
||||
@ -27,6 +27,10 @@
|
||||
if not show_solutions { content }
|
||||
}
|
||||
|
||||
#let if_solutions_else(if_yes, if_no) = {
|
||||
if show_solutions { if_yes } else { if_no }
|
||||
}
|
||||
|
||||
#let solution(content) = {
|
||||
if_solutions(
|
||||
align(
|
||||
@ -54,3 +58,31 @@
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
#let instructornote(content) = {
|
||||
if_solutions(
|
||||
align(
|
||||
center,
|
||||
stack(
|
||||
block(
|
||||
width: 100%,
|
||||
breakable: false,
|
||||
fill: oblue,
|
||||
stroke: oblue + 2pt,
|
||||
inset: 1.5mm,
|
||||
align(left, text(fill: white, weight: "bold", [Instructor note:])),
|
||||
),
|
||||
|
||||
block(
|
||||
width: 100%,
|
||||
height: auto,
|
||||
breakable: false,
|
||||
fill: oblue.lighten(80%).desaturate(10%),
|
||||
stroke: oblue + 2pt,
|
||||
inset: 3mm,
|
||||
align(left, content),
|
||||
),
|
||||
),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
@ -19,7 +19,7 @@ Only one of the following ISBNs is valid. Which one is it?
|
||||
|
||||
\begin{itemize}
|
||||
\item \texttt{0-134-54896-2}
|
||||
\item \texttt{0-895-77258-2}
|
||||
\item \texttt{0-895-77258-2} % oliver twist
|
||||
\end{itemize}
|
||||
|
||||
\begin{solution}
|
||||
@ -67,18 +67,19 @@ This is called a \textit{transposition error}.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
\definition{}
|
||||
ISBN-13 error checking is slightly different. Given a partial ISBN-13 $n_1 n_2 n_3 ... n_{12}$, the final digit is given by
|
||||
|
||||
$$
|
||||
n_{13} = \Biggr[ \sum_{i=1}^{12} n_i \times (2 + (-1)^i) \Biggl] \text{ mod } 10
|
||||
$$
|
||||
|
||||
\problem{}
|
||||
What is the last digit of the following ISBN-13? \par
|
||||
\texttt{978-0-380-97726-?}
|
||||
\texttt{978-030-7292-06*} % foundation
|
||||
|
||||
\begin{solution}
|
||||
The final digit is 0.
|
||||
The final digit is 3.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
@ -127,7 +128,7 @@ Take a valid ISBN-13 and swap two adjacent digits. When will the result be a val
|
||||
\vfill
|
||||
|
||||
\problem{}<isbn-nocorrect>
|
||||
\texttt{978-0-08-2066-46-6} was a valid ISBN until I changed a single digit. \par
|
||||
\texttt{978-008-2066-466} was a valid ISBN until I changed a single digit. \par
|
||||
Can you find the digit I changed? Can you recover the original ISBN?
|
||||
|
||||
\begin{solution}
|
||||
|
@ -570,8 +570,45 @@ If we know which parity bits are inconsistent, how can we find where the error i
|
||||
\vfill
|
||||
|
||||
\problem{}<generalize-hamming>
|
||||
Can you generalize this system for messages of 4, 64, or 256 bits?
|
||||
Generalize this system for messages of 4, 64, or 256 bits. \par
|
||||
\begin{itemize}
|
||||
\item How does the resilience of this scheme change if we use a larger message size?
|
||||
\item How does the efficiency of this scheme change if we send larger messages?
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\definition{}
|
||||
A \textit{deletion} error occurs when one bit of the message is deleted. \par
|
||||
Likewise, an \textit{insertion} error consists of a random inserted bit. \par
|
||||
|
||||
\definition{}
|
||||
A \textit{message stream} is an infinite string of binary digits.
|
||||
|
||||
\problem{}
|
||||
Show that Hamming codes do not reliably detect bit deletions: \par
|
||||
\hint{
|
||||
Create a 17-bit message whose first 16 bits are a valid Hamming block, \par
|
||||
and which is still valid when a bit (chosen by you; not the $17^\text{th}$) is deleted.
|
||||
}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Convince yourself that Hamming codes cannot correct insertions. \par
|
||||
Then, create a 16-bit message that...
|
||||
\begin{itemize}
|
||||
\item is a valid Hamming block, and
|
||||
\item incorrectly "corrects" a single bit error when it encounters an insertion error.
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
As we have seen, Hamming codes effectively handle substitutions, but cannot reliably
|
||||
detect (or correct) insertions and deletions. Correcting those errors is a bit more difficult:
|
||||
if the number of bits we receive is variable, how can we split a stream into a series of messages? \par
|
||||
\note{This is a rhetorical question, which we'll discuss another day.}
|
||||
\pagebreak
|
31
src/Advanced/Fast Inverse Root/main.typ
Normal file
31
src/Advanced/Fast Inverse Root/main.typ
Normal file
@ -0,0 +1,31 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
// Bonus:
|
||||
// - Floats vs fixed point
|
||||
// - Float density
|
||||
// - Find non-floatable rational numbers
|
||||
// - What if we use `n`-bit floats?
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
group: "Advanced 2",
|
||||
title: [Fast Inverse Square Root],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#include "parts/00 intro.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/01 int.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/02 float.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/03 approx.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/04 quake.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/05 bonus.typ"
|
7
src/Advanced/Fast Inverse Root/meta.toml
Normal file
7
src/Advanced/Fast Inverse Root/meta.toml
Normal file
@ -0,0 +1,7 @@
|
||||
[metadata]
|
||||
title = "Fast Inverse Square Root"
|
||||
|
||||
|
||||
[publish]
|
||||
handout = true
|
||||
solutions = true
|
45
src/Advanced/Fast Inverse Root/parts/00 intro.typ
Normal file
45
src/Advanced/Fast Inverse Root/parts/00 intro.typ
Normal file
@ -0,0 +1,45 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
= Introduction
|
||||
|
||||
In 2005, ID Software published the source code of _Quake III Arena_, a popular game released in 1999. \
|
||||
This caused quite a stir: ID Software was responsible for many games popular among old-school engineers (most notably _Doom_, which has a place in programmer humor even today).
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Naturally, this community immediately began dissecting _Quake_'s source. \
|
||||
One particularly interesting function is reproduced below, with original comments: \
|
||||
|
||||
#v(3mm)
|
||||
|
||||
```c
|
||||
float Q_rsqrt( float number ) {
|
||||
long i;
|
||||
float x2, y;
|
||||
const float threehalfs = 1.5F;
|
||||
|
||||
x2 = number * 0.5F;
|
||||
y = number;
|
||||
i = * ( long * ) &y; // evil floating point bit level hacking
|
||||
i = 0x5f3759df - ( i >> 1 ); // [redacted]
|
||||
y = * ( float * ) &i;
|
||||
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
||||
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
||||
|
||||
return y;
|
||||
}
|
||||
```
|
||||
|
||||
#v(3mm)
|
||||
|
||||
This code defines a function `Q_sqrt`, which was used as a fast approximation of the inverse square root in graphics routines. (in other words, `Q_sqrt` efficiently approximates $1 div sqrt(x)$)
|
||||
|
||||
#v(3mm)
|
||||
|
||||
The key word here is "fast": _Quake_ ran on very limited hardware, and traditional approximation techniques (like Taylor series)#footnote[Taylor series aren't used today, and for the same reason. There are better ways.] were too computationally expensive to be viable.
|
||||
|
||||
#v(3mm)
|
||||
|
||||
Our goal today is to understand how `Q_sqrt` works. \
|
||||
To do that, we'll first need to understand how computers represent numbers. \
|
||||
We'll start with simple binary integers---turn the page.
|
102
src/Advanced/Fast Inverse Root/parts/01 int.typ
Normal file
102
src/Advanced/Fast Inverse Root/parts/01 int.typ
Normal file
@ -0,0 +1,102 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
= Integers
|
||||
|
||||
#definition()
|
||||
A _bit string_ is a string of binary digits. \
|
||||
In this handout, we'll denote bit strings with the prefix `0b`. \
|
||||
#note[This prefix is only notation---it is _not_ part of the string itself.] \
|
||||
For example, $1001$ is the number "one thousand and one," while $#text([`0b1001`])$ is the string of bits "1 0 0 1".
|
||||
|
||||
#v(2mm)
|
||||
We will separate long bit strings with underscores for readability. \
|
||||
Underscores have no meaning: $#text([`0b1111_0000`]) = #text([`0b11110000`])$.
|
||||
|
||||
#problem()
|
||||
What is the value of the following bit strings, if we interpret them as integers in base 2?
|
||||
- `0b0001_1010`
|
||||
- `0b0110_0001`
|
||||
|
||||
#solution([
|
||||
- $#text([`0b0001_1010`]) = 2 + 8 + 16 = 26$
|
||||
- $#text([`0b0110_0001`]) = 1 + 32 + 64 = 95$
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#definition()
|
||||
We can interpret a bit string in any number of ways. \
|
||||
One such interpretation is the _unsigned integer_, or `uint` for short. \
|
||||
`uint`s allow us to represent positive (hence "unsigned") integers using 32-bit strings.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
The value of a `uint` is simply its value as a binary number:
|
||||
- $#text([`0b00000000_00000000_00000000_00000000`]) = 0$
|
||||
- $#text([`0b00000000_00000000_00000000_00000011`]) = 3$
|
||||
- $#text([`0b00000000_00000000_00000000_00100000`]) = 32$
|
||||
- $#text([`0b00000000_00000000_00000000_10000010`]) = 130$
|
||||
|
||||
#problem()
|
||||
What is the largest number we can represent with a 32-bit `uint`?
|
||||
|
||||
#solution([
|
||||
$#text([`0b11111111_11111111_11111111_11111111`]) = 2^(32)-1$
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Find the value of each of the following 32-bit unsigned integers:
|
||||
- `0b00000000_00000000_00000101_00111001`
|
||||
- `0b00000000_00000000_00000001_00101100`
|
||||
- `0b00000000_00000000_00000100_10110000`
|
||||
#hint([The third conversion is easy---look carefully at the second.])
|
||||
|
||||
#instructornote[
|
||||
Consider making a list of the powers of two $>= 1024$ on the board.
|
||||
]
|
||||
|
||||
#solution([
|
||||
- $#text([`0b00000000_00000000_00000101_00111001`]) = 1337$
|
||||
- $#text([`0b00000000_00000000_00000001_00101100`]) = 300$
|
||||
- $#text([`0b00000000_00000000_00000010_01011000`]) = 1200$
|
||||
Notice that the third int is the second shifted left twice (i.e, multiplied by 4)
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#definition()
|
||||
In general, fast division of `uints` is difficult#footnote([One may use repeated subtraction, but this isn't efficient.]). \
|
||||
Division by powers of two, however, is incredibly easy: \
|
||||
To divide by two, all we need to do is shift the bits of our integer right.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
For example, consider $#text[`0b0000_0110`] = 6$. \
|
||||
If we insert a zero at the left end of this string and delete the zero at the right \
|
||||
(thus "shifting" each bit right), we get `0b0000_0011`, which is 3. \
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Of course, we lose the remainder when we right-shift an odd number: \
|
||||
$9$ shifted right is $4$, since `0b0000_1001` shifted right is `0b0000_0100`.
|
||||
|
||||
#problem()
|
||||
Right shifts are denoted by the `>>` symbol: \
|
||||
$#text[`00110`] #text[`>>`] n$ means "shift `0b0110` right $n$ times." \
|
||||
Find the value of the following:
|
||||
- $12 #text[`>>`] 1$
|
||||
- $27 #text[`>>`] 3$
|
||||
- $16 #text[`>>`] 8$
|
||||
#note[Naturally, you'll have to convert these integers to binary first.]
|
||||
|
||||
#solution[
|
||||
- $12 #text[`>>`] 1 = 6$
|
||||
- $27 #text[`>>`] 3 = 3$
|
||||
- $16 #text[`>>`] 8 = 0$
|
||||
]
|
||||
|
||||
#v(1fr)
|
207
src/Advanced/Fast Inverse Root/parts/02 float.typ
Normal file
207
src/Advanced/Fast Inverse Root/parts/02 float.typ
Normal file
@ -0,0 +1,207 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
= Floats
|
||||
#definition()
|
||||
_Binary decimals_#footnote([Note that "binary decimal" is a misnomer---"deci" means "ten"!]) are very similar to base-10 decimals.\
|
||||
In base 10, we interpret place value as follows:
|
||||
- $0.1 = 10^(-1)$
|
||||
- $0.03 = 3 times 10^(-2)$
|
||||
- $0.0208 = 2 times 10^(-2) + 8 times 10^(-4)$
|
||||
|
||||
#v(5mm)
|
||||
|
||||
We can do the same in base 2:
|
||||
- $#text([`0.1`]) = 2^(-1) = 0.5$
|
||||
- $#text([`0.011`]) = 2^(-2) + 2^(-3) = 0.375$
|
||||
- $#text([`101.01`]) = 5.125$
|
||||
|
||||
#v(5mm)
|
||||
|
||||
#problem()
|
||||
Rewrite the following binary decimals in base 10: \
|
||||
#note([You may leave your answer as a fraction.])
|
||||
- `1011.101`
|
||||
- `110.1101`
|
||||
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#definition()
|
||||
Another way we can interpret a bit string is as a _signed floating-point decimal_, or a `float` for short. \
|
||||
Floats represent a subset of the real numbers, and are interpreted as follows: \
|
||||
#note([The following only applies to floats that consist of 32 bits. We won't encounter any others today.])
|
||||
|
||||
#align(
|
||||
center,
|
||||
box(
|
||||
inset: 2mm,
|
||||
cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
let chars = (
|
||||
`0`,
|
||||
`b`,
|
||||
`0`,
|
||||
`_`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`_`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`_`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`_`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
`0`,
|
||||
)
|
||||
|
||||
let x = 0
|
||||
for c in chars {
|
||||
content((x, 0), c)
|
||||
x += 0.25
|
||||
}
|
||||
|
||||
let y = -0.4
|
||||
line((0.3, y), (0.65, y))
|
||||
content((0.45, y - 0.2), [s])
|
||||
|
||||
line((0.85, y), (2.9, y))
|
||||
content((1.9, y - 0.2), [exponent])
|
||||
|
||||
line((3.10, y), (9.4, y))
|
||||
content((6.3, y - 0.2), [fraction])
|
||||
}),
|
||||
),
|
||||
)
|
||||
|
||||
- The first bit denotes the sign of the float's value
|
||||
We'll label it $s$. \
|
||||
If $s = #text([`1`])$, this float is negative; if $s = #text([`0`])$, it is positive.
|
||||
|
||||
- The next eight bits represent the _exponent_ of this float.
|
||||
#note([(we'll see what that means soon)]) \
|
||||
We'll call the value of this eight-bit binary integer $E$. \
|
||||
Naturally, $0 <= E <= 255$ #note([(since $E$ consist of eight bits)])
|
||||
|
||||
- The remaining 23 bits represent the _fraction_ of this float. \
|
||||
They are interpreted as the fractional part of a binary decimal. \
|
||||
For example, the bits `0b10100000_00000000_00000000` represent $0.5 + 0.125 = 0.625$. \
|
||||
We'll call the value of these bits as a binary integer $F$. \
|
||||
Their value as a binary decimal is then $F div 2^23$. #note([(convince yourself of this)])
|
||||
|
||||
|
||||
#problem(label: "floata")
|
||||
Consider `0b01000001_10101000_00000000_00000000`. \
|
||||
Find the $s$, $E$, and $F$ we get if we interpret this bit string as a `float`. \
|
||||
#note([Leave $F$ as a sum of powers of two.])
|
||||
|
||||
#solution([
|
||||
$s = 0$ \
|
||||
$E = 258$ \
|
||||
$F = 2^31+2^19 = 2,621,440$
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#definition(label: "floatdef")
|
||||
The final value of a float with sign $s$, exponent $E$, and fraction $F$ is
|
||||
|
||||
$
|
||||
(-1)^s times 2^(E - 127) times (1 + F / (2^(23)))
|
||||
$
|
||||
|
||||
Notice that this is very similar to base-10 scientific notation, which is written as
|
||||
|
||||
$
|
||||
(-1)^s times 10^(e) times (f)
|
||||
$
|
||||
|
||||
#note[
|
||||
We subtract 127 from $E$ so we can represent positive and negative numbers. \
|
||||
$E$ is an eight bit binary integer, so $0 <= E <= 255$ and thus $-127 <= (E - 127) <= 127$.
|
||||
]
|
||||
|
||||
#problem()
|
||||
Consider `0b01000001_10101000_00000000_00000000`. \
|
||||
This is the same bit string we used in @floata. \
|
||||
|
||||
#v(2mm)
|
||||
|
||||
What value do we get if we interpret this bit string as a float? \
|
||||
#hint([$21 div 16 = 1.3125$])
|
||||
|
||||
#solution([
|
||||
This is 21:
|
||||
$
|
||||
2^(131) times (1 + (2^(21) + 2^(19)) / (2^(23)))
|
||||
= 2^(4) times (1 + 0.25 + 0.0625)
|
||||
= 16 times (1.3125)
|
||||
= 21
|
||||
$
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Encode $12.5$ as a float. \
|
||||
#hint([$12.5 div 8 = 1.5625$])
|
||||
|
||||
#solution([
|
||||
$
|
||||
12.5
|
||||
= 8 times 1.5625
|
||||
= 2^(3) times (1 + (0.5 + 0.0625))
|
||||
= 2^(130) times (1 + (2^(22) + 2^(19)) / (2^(23)))
|
||||
$
|
||||
|
||||
which is `0b01000001_01001000_00000000_00000000`. \
|
||||
])
|
||||
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#definition()
|
||||
Say we have a bit string $x$. \
|
||||
We'll let $x_f$ denote the value we get if we interpret $x$ as a float, \
|
||||
and we'll let $x_i$ denote the value we get if we interpret $x$ an integer.
|
||||
|
||||
#problem()
|
||||
Let $x = #text[`0b01000001_01001000_00000000_00000000`]$. \
|
||||
What are $x_f$ and $x_i$? #note([As always, you may leave big numbers as powers of two.])
|
||||
#solution([
|
||||
$x_f = 12.5$
|
||||
|
||||
#v(2mm)
|
||||
|
||||
$x_i = 2^30 + 2^24 + 2^22 + 2^19 = 11,095,237,632$
|
||||
])
|
||||
|
||||
#v(1fr)
|
173
src/Advanced/Fast Inverse Root/parts/03 approx.typ
Normal file
173
src/Advanced/Fast Inverse Root/parts/03 approx.typ
Normal file
@ -0,0 +1,173 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
#import "@preview/cetz-plot:0.1.0": plot, chart
|
||||
|
||||
= Integers and Floats
|
||||
|
||||
#generic("Observation:")
|
||||
For small values of $x$, $log_2(1 + x)$ is approximately equal to $x$. \
|
||||
Note that this equality is exact for $x = 0$ and $x = 1$, since $log_2(1) = 0$ and $log_2(2) = 1$.
|
||||
|
||||
#v(5mm)
|
||||
|
||||
We'll add the _correction term_ $epsilon$ to our approximation: $log_2(1 + a) approx a + epsilon$. \
|
||||
This allows us to improve the average error of our linear approximation:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
inset: 5mm,
|
||||
[$log_2(1+x)$ and $x + 0$]
|
||||
+ cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
let f1(x) = calc.log(calc.abs(x + 1), base: 2)
|
||||
let f2(x) = x
|
||||
|
||||
// Set-up a thin axis style
|
||||
set-style(axes: (stroke: .5pt, tick: (stroke: .5pt)))
|
||||
|
||||
|
||||
plot.plot(
|
||||
size: (7, 7),
|
||||
x-tick-step: 0.2,
|
||||
y-tick-step: 0.2,
|
||||
y-min: 0,
|
||||
y-max: 1,
|
||||
x-min: 0,
|
||||
x-max: 1,
|
||||
legend: none,
|
||||
axis-style: "scientific-auto",
|
||||
x-label: none,
|
||||
y-label: none,
|
||||
{
|
||||
let domain = (0, 1)
|
||||
|
||||
plot.add(
|
||||
f1,
|
||||
domain: domain,
|
||||
label: $log(1+x)$,
|
||||
style: (stroke: ogrape),
|
||||
)
|
||||
|
||||
plot.add(
|
||||
f2,
|
||||
domain: domain,
|
||||
label: $x$,
|
||||
style: (stroke: oblue),
|
||||
)
|
||||
},
|
||||
)
|
||||
})
|
||||
+ [
|
||||
Max error: 0.086 \
|
||||
Average error: 0.0573
|
||||
],
|
||||
[$log_2(1+x)$ and $x + 0.045$]
|
||||
+ cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
let f1(x) = calc.log(calc.abs(x + 1), base: 2)
|
||||
let f2(x) = x + 0.0450466
|
||||
|
||||
// Set-up a thin axis style
|
||||
set-style(axes: (stroke: .5pt, tick: (stroke: .5pt)))
|
||||
|
||||
|
||||
plot.plot(
|
||||
size: (7, 7),
|
||||
x-tick-step: 0.2,
|
||||
y-tick-step: 0.2,
|
||||
y-min: 0,
|
||||
y-max: 1,
|
||||
x-min: 0,
|
||||
x-max: 1,
|
||||
legend: none,
|
||||
axis-style: "scientific-auto",
|
||||
x-label: none,
|
||||
y-label: none,
|
||||
{
|
||||
let domain = (0, 1)
|
||||
|
||||
plot.add(
|
||||
f1,
|
||||
domain: domain,
|
||||
label: $log(1+x)$,
|
||||
style: (stroke: ogrape),
|
||||
)
|
||||
|
||||
plot.add(
|
||||
f2,
|
||||
domain: domain,
|
||||
label: $x$,
|
||||
style: (stroke: oblue),
|
||||
)
|
||||
},
|
||||
)
|
||||
})
|
||||
+ [
|
||||
Max error: 0.041 \
|
||||
Average error: 0.0254
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
A suitiable value of $epsilon$ can be found using calculus or with computational trial-and-error. \
|
||||
We won't bother with this---we'll simply leave the correction term as an opaque constant $epsilon$.
|
||||
|
||||
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#note(
|
||||
type: "Note",
|
||||
[
|
||||
"Average error" above is simply the area of the region between the two graphs:
|
||||
$
|
||||
integral_0^1 abs( #v(1mm) log(1+x)_2 - (x+epsilon) #v(1mm))
|
||||
$
|
||||
Feel free to ignore this note, it isn't a critical part of this handout.
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
#pagebreak()
|
||||
|
||||
#problem(label: "convert")
|
||||
Use the fact that $log_2(1 + a) approx a + epsilon$ to approximate $log_2(x_f)$ in terms of $x_i$. \
|
||||
Namely, show that
|
||||
$
|
||||
log_2(x_f) = (x_i) / (2^23) - 127 + epsilon
|
||||
$
|
||||
#note([
|
||||
In other words, we're finding an expression for $x$ as a float
|
||||
in terms of $x$ as an int.
|
||||
])
|
||||
|
||||
#solution([
|
||||
Let $E$ and $F$ be the exponent and float bits of $x_f$. \
|
||||
We then have:
|
||||
$
|
||||
log_2(x_f)
|
||||
&= log_2 ( 2^(E-127) times (1 + (F) / (2^23)) ) \
|
||||
&= E - 127 + log_2(1 + F / (2^23)) \
|
||||
& approx E-127 + F / (2^23) + epsilon \
|
||||
&= 1 / (2^23)(2^23 E + F) - 127 + epsilon \
|
||||
&= 1 / (2^23)(x_i) - 127 + epsilon
|
||||
$
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Using basic log rules, rewrite $log_2(1 / sqrt(x))$ in terms of $log_2(x)$.
|
||||
|
||||
#solution([
|
||||
$
|
||||
log_2(1 / sqrt(x)) = (-1) / (2)log_2(x)
|
||||
$
|
||||
])
|
||||
|
||||
#v(1fr)
|
210
src/Advanced/Fast Inverse Root/parts/04 quake.typ
Normal file
210
src/Advanced/Fast Inverse Root/parts/04 quake.typ
Normal file
@ -0,0 +1,210 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
= The Fast Inverse Square Root
|
||||
|
||||
A simplified version of the _Quake_ routine we are studying is reproduced below.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
```c
|
||||
float Q_rsqrt( float number ) {
|
||||
long i = * ( long * ) &number;
|
||||
i = 0x5f3759df - ( i >> 1 );
|
||||
return * ( float * ) &i;
|
||||
}
|
||||
```
|
||||
|
||||
#v(2mm)
|
||||
|
||||
This code defines a function `Q_rsqrt` that consumes a float `number` and approximates its inverse square root.
|
||||
If we rewrite this using notation we're familiar with, we get the following:
|
||||
$
|
||||
#text[`Q_sqrt`] (n_f) =
|
||||
6240089 - (n_i div 2)
|
||||
#h(10mm)
|
||||
approx 1 / sqrt(n_f)
|
||||
$
|
||||
|
||||
#note[
|
||||
`0x5f3759df` is $6240089$ in hexadecimal. \
|
||||
Ask an instructor to explain if you don't know what this means. \
|
||||
It is a magic number hard-coded into `Q_sqrt`.
|
||||
]
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Our goal in this section is to understand why this works:
|
||||
- How does Quake approximate $1 / sqrt(x)$ by simply subtracting and dividing by two?
|
||||
- What's special about $6240089$?
|
||||
|
||||
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#remark()
|
||||
For those that are interested, here are the details of the "code-to-math" translation:
|
||||
|
||||
- "`long i = * (long *) &number`" is C magic that tells the compiler \
|
||||
to set `i` to the `uint` value of the bits of `number`. \
|
||||
#note[
|
||||
"long" refers to a "long integer", which has 32 bits. \
|
||||
Normal `int`s have 16 bits, `short int`s have 8.
|
||||
] \
|
||||
In other words, `number` is $n_f$ and `i` is $n_i$.
|
||||
#v(2mm)
|
||||
|
||||
|
||||
- Notice the right-shift in the second line of the function. \
|
||||
We translated `(i >> 1)` into $(n_i div 2)$.
|
||||
#v(2mm)
|
||||
|
||||
- "`return * (float *) &i`" is again C magic. \
|
||||
Much like before, it tells us to return the value of the bits of `i` as a float.
|
||||
#pagebreak()
|
||||
|
||||
#generic("Setup:")
|
||||
We are now ready to show that $#text[`Q_sqrt`] (x)$ effectively approximates $1/sqrt(x)$. \
|
||||
For convenience, let's call the bit string of the inverse square root $r$. \
|
||||
In other words,
|
||||
$
|
||||
r_f := 1 / (sqrt(n_f))
|
||||
$
|
||||
This is the value we want to approximate. \
|
||||
|
||||
#problem(label: "finala")
|
||||
Find an approximation for $log_2(r_f)$ in terms of $n_i$ and $epsilon$ \
|
||||
#note[Remember, $epsilon$ is the correction constant in our approximation of $log_2(1 + x)$.]
|
||||
|
||||
#solution[
|
||||
$
|
||||
log_2(r_f)
|
||||
= log_2(1 / sqrt(n_f))
|
||||
= (-1) / 2 log_2(n_f)
|
||||
approx (-1) / 2 ( (n_i) / (2^23) + epsilon - 127 )
|
||||
$
|
||||
]
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem(label: "finalb")
|
||||
Let's call the "magic number" in the code above $kappa$, so that
|
||||
$
|
||||
#text[`Q_sqrt`] (n_f) = kappa - (n_i div 2)
|
||||
$
|
||||
Use @convert and @finala to show that $#text[`Q_sqrt`] (n_f) approx r_i$ \
|
||||
#note(type: "Note")[
|
||||
If we know $r_i$, we know $r_f$. \
|
||||
We don't even need to convert between the two---the underlying bits are the same!
|
||||
]
|
||||
|
||||
#solution[
|
||||
From @convert, we know that
|
||||
$
|
||||
log_2(r_f) approx (r_i) / (2^23) + epsilon - 127
|
||||
$
|
||||
|
||||
Combining this with the result from @finala, we get:
|
||||
$
|
||||
(r_i) / (2^23) + epsilon - 127
|
||||
&approx (-1) / (2) ( (n_i) / (2^23) + epsilon - 127) \
|
||||
(r_i) / (2^23)
|
||||
&approx (-1) / (2) ( (n_i) / (2^23)) + 3 / 2 (127 - epsilon) \
|
||||
r_i
|
||||
&approx (-1) / 2 (n_i) + 2^23 3 / 2(127 - epsilon)
|
||||
= 2^23 3 / 2 (127 - epsilon) - (n_i) / 2
|
||||
$
|
||||
|
||||
#v(2mm)
|
||||
|
||||
This is exactly what we need! If we set $kappa$ to $(3 times 2^22) (127-epsilon)$, then
|
||||
$
|
||||
r_i approx kappa - (n_i div 2) = #text[`Q_sqrt`] (n_f)
|
||||
$
|
||||
]
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem(label: "finalc")
|
||||
What is the exact value of $kappa$ in terms of $epsilon$? \
|
||||
#hint[Look at @finalb. We already found it!]
|
||||
|
||||
#solution[
|
||||
This problem makes sure our students see that
|
||||
$kappa = (3 times 2^22) (127 - epsilon)$. \
|
||||
See the solution to @finalb.
|
||||
]
|
||||
|
||||
#v(2cm)
|
||||
|
||||
#pagebreak()
|
||||
|
||||
#remark()
|
||||
In @finalc we saw that $kappa = (3 times 2^22) (127 - epsilon)$. \
|
||||
Looking at the code again, we see that $kappa = #text[`0x5f3759df`]$ in _Quake_:
|
||||
|
||||
#v(2mm)
|
||||
|
||||
```c
|
||||
float Q_rsqrt( float number ) {
|
||||
long i = * ( long * ) &number;
|
||||
i = 0x5f3759df - ( i >> 1 );
|
||||
return * ( float * ) &i;
|
||||
}
|
||||
```
|
||||
|
||||
#v(2mm)
|
||||
Using a calculator and some basic algebra, we can find the $epsilon$ this code uses: \
|
||||
#note[Remember, #text[`0x5f3759df`] is $6240089$ in hexadecimal.]
|
||||
$
|
||||
(3 times 2^22) (127 - epsilon) &= 6240089 \
|
||||
(127 - epsilon) &= 126.955 \
|
||||
epsilon &= 0.0450466
|
||||
$
|
||||
|
||||
So, $0.045$ is the $epsilon$ used by Quake. \
|
||||
Online sources state that this constant was generated by trial-and-error, \
|
||||
though it is fairly close to the ideal $epsilon$.
|
||||
|
||||
#remark()
|
||||
And now, we're done! \
|
||||
We've shown that `Q_sqrt(x)` approximates $1/sqrt(x)$ fairly well. \
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Notably, `Q_sqrt` uses _zero_ divisions or multiplications (`>>` doesn't count). \
|
||||
This makes it _very_ fast when compared to more traditional approximation techniques (i.e, Taylor series).
|
||||
|
||||
#v(2mm)
|
||||
|
||||
In the case of _Quake_, this is very important. 3D graphics require thousands of inverse-square-root calculations to render a single frame#footnote[e.g, to generate normal vectors], which is not an easy task for a Playstation running at 300MHz.
|
||||
|
||||
#instructornote[
|
||||
Let $x$ be a bit string. If we assume $x_f$ is positive and $E$ is even, then
|
||||
$
|
||||
(x #text[`>>`] 1)_f = 2^((E div 2) - 127) times (1 + (F div 2) / (2^(23)))
|
||||
$
|
||||
Notably: a right-shift divides the exponent of $x_f$ by two, \
|
||||
which is, of course, a square root!
|
||||
|
||||
#v(2mm)
|
||||
|
||||
This intuition is hand-wavy, though: \
|
||||
If $E$ is odd, its lowest-order bit becomes the highest-order bit of $F$ when we shift $x$ right. \
|
||||
Also, a right shift doesn't divide the _entire_ exponent, skipping the $-127$ offset. \
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Remarkably, this intuition is still somewhat correct. \
|
||||
The bits align _just so_, and our approximation still works.
|
||||
|
||||
#v(8mm)
|
||||
|
||||
One can think of the fast inverse root as a "digital slide rule": \
|
||||
The integer representation of $x_f$ already contains $log_2(x_f)$, offset and scaled. \
|
||||
By subtracting and dividing in "log space", we effectively invert and root $x_f$!
|
||||
|
||||
After all,
|
||||
$
|
||||
- 1 / 2 log_2(n_f) = 1 / sqrt(n_f)
|
||||
$
|
||||
]
|
36
src/Advanced/Fast Inverse Root/parts/05 bonus.typ
Normal file
36
src/Advanced/Fast Inverse Root/parts/05 bonus.typ
Normal file
@ -0,0 +1,36 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
= Bonus -- More about Floats
|
||||
|
||||
#problem()
|
||||
Convince yourself that all numbers that can be represented as a float are rational.
|
||||
|
||||
#problem()
|
||||
Find a rational number that cannot be represented as a float.
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
What is the smallest positive 32-bit float?
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
What is the largest positive 32-bit float?
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
How many floats are between $-1$ and $1$?
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
How many floats are between $1$ and $2$?
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
How many floats are between $1$ and $128$?
|
||||
|
||||
#v(1fr)
|
@ -1,18 +1,3 @@
|
||||
% Copyright (C) 2023 <Mark (mark@betalupi.com)>
|
||||
%
|
||||
% This program is free software: you can redistribute it and/or modify
|
||||
% it under the terms of the GNU General Public License as published by
|
||||
% the Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% You may have received a copy of the GNU General Public License
|
||||
% along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%
|
||||
%
|
||||
%
|
||||
% If you edit this, please give credit!
|
||||
% Quality handouts take time to make.
|
||||
|
||||
% use the [nosolutions] flag to hide solutions,
|
||||
% use the [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
|
@ -1,19 +1,3 @@
|
||||
% Copyright (C) 2023 <Mark (mark@betalupi.com)>
|
||||
%
|
||||
% This program is free software: you can redistribute it and/or modify
|
||||
% it under the terms of the GNU General Public License as published by
|
||||
% the Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% You may have received a copy of the GNU General Public License
|
||||
% along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%
|
||||
%
|
||||
%
|
||||
% If you edit this, please give credit!
|
||||
% Quality handouts take time to make.
|
||||
|
||||
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
|
@ -1,19 +1,3 @@
|
||||
% Copyright (C) 2023 <Mark (mark@betalupi.com)>
|
||||
%
|
||||
% This program is free software: you can redistribute it and/or modify
|
||||
% it under the terms of the GNU General Public License as published by
|
||||
% the Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% You may have received a copy of the GNU General Public License
|
||||
% along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%
|
||||
%
|
||||
%
|
||||
% If you edit this, please give credit!
|
||||
% Quality handouts take time to make.
|
||||
|
||||
|
||||
\section{Dual Numbers}
|
||||
|
||||
\definition{}
|
||||
|
@ -1,18 +1,3 @@
|
||||
% Copyright (C) 2023 <Mark (mark@betalupi.com)>
|
||||
%
|
||||
% This program is free software: you can redistribute it and/or modify
|
||||
% it under the terms of the GNU General Public License as published by
|
||||
% the Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% You may have received a copy of the GNU General Public License
|
||||
% along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%
|
||||
%
|
||||
%
|
||||
% If you edit this, please give credit!
|
||||
% Quality handouts take time to make.
|
||||
|
||||
\section{Extensions of $\mathbb{R}$}
|
||||
|
||||
\definition{}
|
||||
|
@ -1,19 +1,3 @@
|
||||
% Copyright (C) 2023 <Mark (mark@betalupi.com)>
|
||||
%
|
||||
% This program is free software: you can redistribute it and/or modify
|
||||
% it under the terms of the GNU General Public License as published by
|
||||
% the Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% You may have received a copy of the GNU General Public License
|
||||
% along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%
|
||||
%
|
||||
%
|
||||
% If you edit this, please give credit!
|
||||
% Quality handouts take time to make.
|
||||
|
||||
|
||||
\section*{The supremum \& the infimum}
|
||||
|
||||
\definition{}
|
||||
|
Loading…
x
Reference in New Issue
Block a user