Compare commits
13 Commits
358a289da2
...
28c0d32f7e
Author | SHA1 | Date | |
---|---|---|---|
28c0d32f7e | |||
a71786ba88 | |||
286e545130 | |||
e5c09302e4 | |||
95663795cf | |||
d9267e8f77 | |||
f2ac44b049 | |||
3ec7433bd8 | |||
aff861fe80 | |||
88d90b87f6 | |||
814620ec19 | |||
6361adb19e | |||
84e07165bf |
@ -185,15 +185,18 @@
|
||||
//
|
||||
|
||||
|
||||
#let hint(content) = {
|
||||
text(fill: rgb(100, 100, 100), style: "oblique", "Hint: ")
|
||||
#let note(content, type: none) = {
|
||||
if type != none {
|
||||
text(fill: rgb(100, 100, 100), style: "oblique", [#type: ])
|
||||
}
|
||||
text(fill: rgb(100, 100, 100), content)
|
||||
}
|
||||
|
||||
#let note(content) = {
|
||||
text(fill: rgb(100, 100, 100), content)
|
||||
#let hint(content) = {
|
||||
note(content, type: "Hint")
|
||||
}
|
||||
|
||||
|
||||
#let examplesolution(content) = {
|
||||
let c = oblue
|
||||
|
||||
@ -281,6 +284,7 @@
|
||||
if show_solutions {
|
||||
warn
|
||||
}
|
||||
|
||||
doc
|
||||
}
|
||||
|
||||
|
@ -1,35 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
hidewarning,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
|
||||
\title{Warm-Up: A Familiar Concept}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
|
||||
\problem{}<one>
|
||||
Let $v = [-5, -2, 0, 1, 4, 1000]$. Find all $x$ that minimize the following metric. \par
|
||||
$$
|
||||
\sum_{\forall i} |v_i - x| = |v_1 - x| + |v_2 - x| + ... + |v_6 - x|
|
||||
$$
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $v = [-5, -2, 0, 1, 4, 1000, 1001]$. Find all $x$ that minimize the metric in \ref{one}.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is this metric usually called?
|
||||
|
||||
\end{document}
|
39
src/Warm-Ups/A Familiar Concept/main.typ
Normal file
39
src/Warm-Ups/A Familiar Concept/main.typ
Normal file
@ -0,0 +1,39 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: A Familiar Concept],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
Let $v = [-5, -2, 0, 1, 4, 1000]$. Find all $x$ that minimize the following metric:
|
||||
|
||||
#align(
|
||||
center,
|
||||
box(
|
||||
inset: 3mm,
|
||||
$
|
||||
sum_(#sym.forall i) |v_i - x| = |v_1 - x| + |v_2 - x| + ... + |v_6 - x|
|
||||
$,
|
||||
),
|
||||
)
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Let $v = [-5, -2, 0, 1, 4, 1000, 1001]$. Find all $x$ that minimize the metric in the previous problem.
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
What is this metric usually called?
|
||||
|
||||
|
||||
#v(0.25fr)
|
@ -1,31 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
hidewarning,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
|
||||
\title{Warm-Up: Fuse Timers}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today.}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
|
||||
\problem{}
|
||||
Suppose we have two strings and a lighter. Each string takes an hour to fully burn. \par
|
||||
However, we do not know how fast each part of the string burns:
|
||||
half might burn in 1 minute, and the rest could take 59.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
How would we measure exactly 45 minutes using these strings?
|
||||
|
||||
\vfill
|
||||
|
||||
\end{document}
|
21
src/Warm-Ups/Fuse Timers/main.typ
Normal file
21
src/Warm-Ups/Fuse Timers/main.typ
Normal file
@ -0,0 +1,21 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: Fuse Timers],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
Suppose we have two strings and a lighter. Each string takes exactly an hour to fully burn. \
|
||||
However, we do not know how fast each part of the string burns:
|
||||
half might burn in 1 minute, and the rest could take 59.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
How can we measure exactly 45 minutes using these two strings?
|
@ -1,121 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
\makeatletter
|
||||
\newcommand{\thisone}{
|
||||
\if@solutions
|
||||
{\color{red} $\Leftarrow$ \texttt{this one}}
|
||||
\else\fi
|
||||
}
|
||||
|
||||
\title{Warm-Up: The Gallery}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
A museum curator is arranging seven photographs on a gallery wall in accordance with the photographer's requirements.
|
||||
They are titled as follows: Fence, Gardenias, Hibiscus, Irises, Katydid, Lotus, and Magnolia.
|
||||
|
||||
The photograph's requirements are as follows:
|
||||
\begin{itemize}
|
||||
\item Gardenias must be immediately before Katydid.
|
||||
\item Hibiscus must be somewhere before Katydid but cannot be the first photograph.
|
||||
\item Irises and Lotus must be next to one another.
|
||||
\item Magnolia must be one of the first three photographs.
|
||||
\item Fence must be either first or seventh.
|
||||
\end{itemize}
|
||||
|
||||
\problem{}
|
||||
Which of the below could be a valid ordering? \par
|
||||
\note[Note]{We denote each painting by the first letter of its title.}
|
||||
\begin{itemize}
|
||||
\item \texttt{FHGMKIL}
|
||||
\item \texttt{HMGKILF}
|
||||
\item \texttt{ILMHGKF} \thisone{}
|
||||
\item \texttt{LMIHGKF}
|
||||
\item \texttt{MFHGKLI}
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
If Irises is immediately before Gardenias, which of the following could be true?
|
||||
\begin{itemize}
|
||||
\item Gardenias is fourth
|
||||
\item Hibiscus is fourth
|
||||
\item Irises is third
|
||||
\item Lotus is second
|
||||
\item Magnolia is third \thisone{}
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
The ordering of the photographs is fully determined if...
|
||||
\begin{itemize}
|
||||
\item Gardenias is fourth
|
||||
\item Hibiscus is second
|
||||
\item Irises is second
|
||||
\item Lotus is first \thisone{}
|
||||
\item Magnolia is third
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
If Magnolia is second, what CANNOT be true?
|
||||
\begin{itemize}
|
||||
\item Hibiscus is third
|
||||
\item Hibiscus is fourth \thisone{}
|
||||
\item Hibiscus is fifth
|
||||
\item Gardenias is fourth
|
||||
\item Gardenias is sixth
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Katydid cannot be in which position?
|
||||
\begin{itemize}
|
||||
\item Third \thisone{}
|
||||
\item Fourth
|
||||
\item Fifth
|
||||
\item Sixth
|
||||
\item Seventh
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
If Gardenias is fourth, what must be true?
|
||||
\begin{itemize}
|
||||
\item Fence is first \thisone{}
|
||||
\item Hibiscus is third
|
||||
\item Irises is seventh
|
||||
\item Magnolia is first
|
||||
\item Magnolia is second
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Which one of the following,
|
||||
if substituted for the second condition,
|
||||
would have the same effect in determining the
|
||||
arrangement of the photographs?
|
||||
|
||||
\begin{itemize}
|
||||
\item If Fence is seventh, Hibiscus is second
|
||||
\item Gardenias is somewhere after Hibiscus, and either Fence or Magnolia is first
|
||||
\item Hibiscus must be somewhere between the first and sixth photographs
|
||||
\item Unless Hibiscus is second, it must be somewhere between Magnolia and Gardenias \thisone{}
|
||||
\item Katydid is somewhere after Hibiscus, which must be after Fence.
|
||||
\end{itemize}
|
||||
\vfill
|
||||
\pagebreak
|
||||
\end{document}
|
109
src/Warm-Ups/Gallery/main.typ
Normal file
109
src/Warm-Ups/Gallery/main.typ
Normal file
@ -0,0 +1,109 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: The Gallery],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#let thisone = if_solutions(
|
||||
text(fill: ored, [#sym.arrow.l.double.long `this one`]),
|
||||
)
|
||||
|
||||
A museum curator is arranging seven photographs on a gallery wall in accordance with the photographer's requirements.
|
||||
They are titled as follows: Fence, Gardenias, Hibiscus, Irises, Katydid, Lotus, and Magnolia.
|
||||
|
||||
The photograph's requirements are as follows:
|
||||
#v(2mm)
|
||||
- Gardenias must be immediately before Katydid.
|
||||
- Hibiscus must be somewhere before Katydid but cannot be the first photograph.
|
||||
- Irises and Lotus must be next to one another.
|
||||
- Magnolia must be one of the first three photographs.
|
||||
- Fence must be either first or seventh.
|
||||
|
||||
|
||||
#problem()
|
||||
Which of the below could be a valid ordering? \
|
||||
#note([We denote each painting by the first letter of its title.], type: "Note")
|
||||
- `FHGMKIL`
|
||||
- `HMGKILF`
|
||||
- `ILMHGKF` #thisone
|
||||
- `LMIHGKF`
|
||||
- `MFHGKLI`
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
If Irises is immediately before Gardenias, which of the following could be true?
|
||||
- Gardenias is fourth
|
||||
- Hibiscus is fourth
|
||||
- Irises is third
|
||||
- Lotus is second
|
||||
- Magnolia is third #thisone
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
The ordering of the photographs is fully determined if...
|
||||
- Gardenias is fourth
|
||||
- Hibiscus is second
|
||||
- Irises is second
|
||||
- Lotus is first #thisone
|
||||
- Magnolia is third
|
||||
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
|
||||
|
||||
#problem()
|
||||
If Magnolia is second, what CANNOT be true?
|
||||
- Hibiscus is third
|
||||
- Hibiscus is fourth #thisone
|
||||
- Hibiscus is fifth
|
||||
- Gardenias is fourth
|
||||
- Gardenias is sixth
|
||||
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Katydid cannot be in which position?
|
||||
- Third #thisone
|
||||
- Fourth
|
||||
- Fifth
|
||||
- Sixth
|
||||
- Seventh
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
If Gardenias is fourth, what must be true?
|
||||
- Fence is first #thisone
|
||||
- Hibiscus is third
|
||||
- Irises is seventh
|
||||
- Magnolia is first
|
||||
- Magnolia is second
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Which one of the following,
|
||||
if substituted for the second condition,
|
||||
would have the same effect in determining the
|
||||
arrangement of the photographs?
|
||||
|
||||
- If Fence is seventh, Hibiscus is second
|
||||
- Gardenias is somewhere after Hibiscus, and either Fence or Magnolia is first
|
||||
- Hibiscus must be somewhere between the first and sixth photographs
|
||||
- Unless Hibiscus is second, it must be somewhere between Magnolia and Gardenias \
|
||||
#if_solutions(text(fill: ored, [#sym.arrow.t.double `this one`]))
|
||||
- Katydid is somewhere after Hibiscus, which must be after Fence.
|
||||
|
||||
#v(1fr)
|
@ -1,54 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
hidewarning,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
\title{Warm-Up: Mario Kart}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\problem{}
|
||||
A standard Mario Kart cup consists of 12 players and four races. \par
|
||||
Each race is scored as follows:
|
||||
\begin{itemize}
|
||||
\item 15 points are awarded for first place;
|
||||
\item 12 for second;
|
||||
\item and $(13 - \text{place})$ otherwise.
|
||||
\end{itemize}
|
||||
In any one race, no players may tie.
|
||||
A player's score at the end of a cup is the sum of their scores for each of the four races.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
An $n$-way tie occurs when the top $n$ players have the same score at the end of a round. \par
|
||||
What is the largest possible $n$, and how is it achieved?
|
||||
|
||||
\begin{solution}
|
||||
A 12-way tie is impossible, since the total number of point is not divisible by 12.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
A 11-way tie is possible, with a top score of 28:
|
||||
\begin{itemize}
|
||||
\item Four players finish $1^\text{st}$, $3^\text{ed}$, $11^\text{th}$, and $12^\text{th}$;
|
||||
|
||||
% spell:off
|
||||
\item Four players finish $2^\text{nd}$, $4^\text{th}$, $9^\text{th}$, and $10^\text{th}$;
|
||||
% spell:on
|
||||
|
||||
\item Two players finish fifth twice and seventh twice,
|
||||
\item One player finishes sixth in each race.
|
||||
\end{itemize}
|
||||
The final player always finishes eighth, with a non-tie score of 20.
|
||||
\end{solution}
|
||||
|
||||
\end{document}
|
41
src/Warm-Ups/Mario Kart/main.typ
Normal file
41
src/Warm-Ups/Mario Kart/main.typ
Normal file
@ -0,0 +1,41 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: Mario Kart],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
A standard Mario Kart cup consists of 12 players and four races. \
|
||||
Each race is scored as follows:
|
||||
- 15 points are awarded for first place;
|
||||
- 12 for second;
|
||||
- and $(13 - #text("place"))$ otherwise.
|
||||
|
||||
In any one race, no players may tie. \
|
||||
A player's score at the end of a cup is the sum of their scores for each of the four races.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
An $n$-way tie occurs when the top $n$ players have the same score at the end of a round. \
|
||||
What is the largest possible $n$, and how is it achieved?
|
||||
|
||||
#solution([
|
||||
A 12-way tie is impossible, since the total number of point is not divisible by 12.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
A 11-way tie is possible, with a top score of 28:
|
||||
- Four players finish $1^#text("st")$, $3^#text("ed")$, $11^#text("th")$, and $12^#text("th")$;
|
||||
- Four players finish $2^#text("nd")$, $4^#text("th")$, $9^#text("th")$, and $10^#text("th")$; // spell:disable-line
|
||||
- Two players finish fifth twice and seventh twice,
|
||||
- One player finishes sixth in each race.
|
||||
The final player always finishes eighth, with a non-tie score of 20.
|
||||
|
||||
])
|
@ -1,132 +0,0 @@
|
||||
\documentclass[
|
||||
nosolutions,
|
||||
hidewarning,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{arrows.meta}
|
||||
\usetikzlibrary{shapes.geometric}
|
||||
|
||||
% We put nodes in a separate layer, so we can
|
||||
% slightly overlap with paths for a perfect fit
|
||||
\pgfdeclarelayer{nodes}
|
||||
\pgfdeclarelayer{path}
|
||||
\pgfsetlayers{main,nodes}
|
||||
|
||||
% Layer settings
|
||||
\tikzset{
|
||||
% Layer hack, lets us write
|
||||
% later = * in scopes.
|
||||
layer/.style = {
|
||||
execute at begin scope={\pgfonlayer{#1}},
|
||||
execute at end scope={\endpgfonlayer}
|
||||
},
|
||||
%
|
||||
% Arrowhead tweak
|
||||
>={Latex[ width=2mm, length=2mm ]},
|
||||
%
|
||||
% Nodes
|
||||
main/.style = {
|
||||
draw,
|
||||
circle,
|
||||
fill = white,
|
||||
line width = 0.35mm
|
||||
}
|
||||
}
|
||||
|
||||
\title{Warm Up: Odd Dice}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\problem{}
|
||||
|
||||
We say a set of dice $\{A, B, C\}$ is \textit{nontransitive}
|
||||
if, on average, $A$ beats $B$, $B$ beats $C$, and $C$ beats $A$.
|
||||
In other words, we get a counterintuitive \say{rock - paper - scissors} effect.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Create a set of nontransitive six-sided dice. \par
|
||||
\hint{All sides should be numbered with positive integers less than 10.}
|
||||
|
||||
\begin{solution}
|
||||
One possible set can be numbered as follows:
|
||||
\begin{itemize}
|
||||
\item Die $A$: $2, 2, 4, 4, 9, 9$
|
||||
\item Die $B$: $1, 1, 6, 6, 8, 8$
|
||||
\item Die $C$: $3, 3, 5, 5, 7, 7$
|
||||
\end{itemize}
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Another solution is below:
|
||||
\begin{itemize}
|
||||
\item Die $A$: $3, 3, 3, 3, 3, 6$
|
||||
\item Die $B$: $2, 2, 2, 5, 5, 5$
|
||||
\item Die $C$: $1, 4, 4, 4, 4, 4$
|
||||
\end{itemize}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Now, consider the set of six-sided dice below:
|
||||
\begin{itemize}
|
||||
\item Die $A$: $4, 4, 4, 4, 4, 9$
|
||||
\item Die $B$: $3, 3, 3, 3, 8, 8$
|
||||
\item Die $C$: $2, 2, 2, 7, 7, 7$
|
||||
\item Die $D$: $1, 1, 6, 6, 6, 6$
|
||||
\item Die $E$: $0, 5, 5, 5, 5, 5$
|
||||
\end{itemize}
|
||||
On average, which die beats each of the others? Draw a graph. \par
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.5]
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[main] (a) at (-2, 0.2) {$a$};
|
||||
\node[main] (b) at (0, 2) {$b$};
|
||||
\node[main] (c) at (2, 0.2) {$c$};
|
||||
\node[main] (d) at (1, -2) {$d$};
|
||||
\node[main] (e) at (-1, -2) {$e$};
|
||||
\end{scope}
|
||||
|
||||
\draw[->]
|
||||
(a) edge (b)
|
||||
(b) edge (c)
|
||||
(c) edge (d)
|
||||
(d) edge (e)
|
||||
(e) edge (a)
|
||||
|
||||
(a) edge (c)
|
||||
(b) edge (d)
|
||||
(c) edge (e)
|
||||
(d) edge (a)
|
||||
(e) edge (b)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
Now, say we roll each die twice. What happens to the graph above?
|
||||
|
||||
\begin{solution}
|
||||
The direction of each edge is reversed!
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\end{document}
|
117
src/Warm-Ups/Odd Dice/main.typ
Normal file
117
src/Warm-Ups/Odd Dice/main.typ
Normal file
@ -0,0 +1,117 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: Odd Dice],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
We say a set of dice ${A, B, C}$ is _nontransitive_
|
||||
if, on average, $A$ beats $B$, $B$ beats $C$, and $C$ beats $A$.
|
||||
In other words, we get a counterintuitive "rock - paper - scissors" effect.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Create a set of nontransitive six-sided dice. \
|
||||
#hint([All sides should be numbered with positive integers less than 10.])
|
||||
|
||||
#solution([
|
||||
One possible set can be numbered as follows:
|
||||
- Die $A$: $2, 2, 4, 4, 9, 9$
|
||||
- Die $B$: $1, 1, 6, 6, 8, 8$
|
||||
- Die $C$: $3, 3, 5, 5, 7, 7$
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Another solution is below:
|
||||
- Die $A$: $3, 3, 3, 3, 3, 6$
|
||||
- Die $B$: $2, 2, 2, 5, 5, 5$
|
||||
- Die $C$: $1, 4, 4, 4, 4, 4$
|
||||
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Now, consider the set of six-sided dice below:
|
||||
- Die $A$: $4, 4, 4, 4, 4, 9$
|
||||
- Die $B$: $3, 3, 3, 3, 8, 8$
|
||||
- Die $C$: $2, 2, 2, 7, 7, 7$
|
||||
- Die $D$: $1, 1, 6, 6, 6, 6$
|
||||
- Die $E$: $0, 5, 5, 5, 5, 5$
|
||||
On average, which die beats each of the others? Draw a diagram.
|
||||
|
||||
#solution(
|
||||
align(
|
||||
center,
|
||||
cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
let s = 0.8 // Scale
|
||||
let t = 13pt * s // text size
|
||||
let radius = 0.3 * s
|
||||
|
||||
// Points
|
||||
let a = (-2 * s, 0.2 * s)
|
||||
let b = (0 * s, 2 * s)
|
||||
let c = (2 * s, 0.2 * s)
|
||||
let d = (1.2 * s, -2.1 * s)
|
||||
let e = (-1.2 * s, -2.1 * s)
|
||||
|
||||
set-style(
|
||||
stroke: (thickness: 0.6mm * s),
|
||||
mark: (
|
||||
end: (
|
||||
symbol: ">",
|
||||
fill: black,
|
||||
offset: radius + (0.025 * s),
|
||||
width: 1.2mm * s,
|
||||
length: 1.2mm * s,
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
line(a, b)
|
||||
line(b, c)
|
||||
line(c, d)
|
||||
line(d, e)
|
||||
line(e, a)
|
||||
line(a, c)
|
||||
line(b, d)
|
||||
line(c, e)
|
||||
line(d, a)
|
||||
line(e, b)
|
||||
|
||||
circle(a, radius: radius, fill: oblue, stroke: none)
|
||||
circle(b, radius: radius, fill: oblue, stroke: none)
|
||||
circle(c, radius: radius, fill: oblue, stroke: none)
|
||||
circle(d, radius: radius, fill: oblue, stroke: none)
|
||||
circle(e, radius: radius, fill: oblue, stroke: none)
|
||||
|
||||
content(a, text(fill: white, size: t, [*A*]))
|
||||
content(b, text(fill: white, size: t, [*B*]))
|
||||
content(c, text(fill: white, size: t, [*C*]))
|
||||
content(d, text(fill: white, size: t, [*D*]))
|
||||
content(e, text(fill: white, size: t, [*E*]))
|
||||
}),
|
||||
),
|
||||
)
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Now, say we roll each die twice. What happens to the graph from the previous problem?
|
||||
|
||||
#solution([
|
||||
The direction of each edge is reversed!
|
||||
])
|
||||
|
||||
#v(1fr)
|
@ -1,57 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
\title{Warm-Up: Partition Products}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today.}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\problem{}
|
||||
Take any positive integer $n$. \par
|
||||
Now, write it as sum of smaller positive integers: $n = a_1 + a_2 + ... + a_k$ \par
|
||||
Maximize the product $a_1 \times a_2 \times ... \times a_k$
|
||||
|
||||
|
||||
|
||||
\begin{solution}
|
||||
|
||||
\textbf{Interesting Solution:}
|
||||
|
||||
Of course, all $a_i$ should be greater than $1$. \par
|
||||
Also, all $a_i$ should be smaller than four, since $x \leq x(x-2)$ if $x \geq 4$. \par
|
||||
Thus, we're left with sequences that only contain 2 and 3. \par
|
||||
\note{Note that two twos are the same as one four, but we exclude fours for simplicity.}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Finally, we see that $3^2 > 2^3$, so any three twos are better repackaged as two threes. \par
|
||||
The best sequence $a_i$ thus consists of a maximal number of threes followed by 0, 1, or 2 twos.
|
||||
|
||||
\linehack{}
|
||||
|
||||
|
||||
|
||||
\textbf{Calculus Solution:}
|
||||
|
||||
First, solve this problem for equal, non-integer $a_i$:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We know $n = \prod{a_i}$, thus $\ln(n) = \sum{\ln(a_i)}$. \par
|
||||
If all $a_i$ are equal, we get $\ln(n) = k \times \ln(n / k)$. \par
|
||||
Derive wrt $k$ and set to zero to get $\ln(n / k) = 1$ \par
|
||||
So $k = n / e$ and $n / k = e \approx 2.7$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
If we try to approximate this with integers, we get the same solution as above.
|
||||
\end{solution}
|
||||
\end{document}
|
47
src/Warm-Ups/Partition Products/main.typ
Normal file
47
src/Warm-Ups/Partition Products/main.typ
Normal file
@ -0,0 +1,47 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: Partition Products],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
Take any positive integer $n$. \
|
||||
Now, write it as sum of smaller positive integers: $n = a_1 + a_2 + ... a_k$ \
|
||||
Maximize the product $a_1 #sym.times a_2 #sym.times ... #sym.times a_k$
|
||||
|
||||
|
||||
#solution([
|
||||
*Interesting Solution:*
|
||||
|
||||
Of course, all $a_i$ should be greater than $1$. \
|
||||
Also, all $a_i$ should be smaller than four, since $x <= x(x-2)$ if $x >= 4$. \
|
||||
Thus, we're left with sequences that only contain 2 and 3. \
|
||||
#note([Note that two twos are the same as one four, but we exclude fours for simplicity.])
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Finally, we see that $3^2 > 2^3$, so any three twos are better repackaged as two threes. \
|
||||
The best sequence $a_i$ thus consists of a maximal number of threes followed by 0, 1, or 2 twos.
|
||||
|
||||
#v(8mm)
|
||||
|
||||
*Calculus Solution:*
|
||||
|
||||
First, solve this problem for equal, real $a_i$:
|
||||
#v(2mm)
|
||||
We know $n = product(a_i)$, thus $ln(n) = sum(ln(a_i))$. \
|
||||
If all $a_i$ are equal, we get $ln(n) = k #sym.times ln(n / k)$. \
|
||||
Derive wrt $k$ and set to zero to get $ln(n / k) = 1$ \
|
||||
So $k = n / e$ and $n / k = e #sym.approx 2.7$
|
||||
|
||||
#v(2mm)
|
||||
|
||||
If we try to approximate this with integers, we get the same solution as above.
|
||||
])
|
@ -1,47 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
\usepackage{graphicx}
|
||||
|
||||
\title{Warm-Up: Passing Balls}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\problem{}
|
||||
|
||||
Twelve people are standing in a circle. Each is assigned a number between 1 and 12. \par
|
||||
Participants numbered 1, 2, 3, and 4 hold red, green, yellow, and black balls, respectively. \par
|
||||
Everyone else is empty-handed.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Each participant can pass their ball to any student that is exactly 5 positions away. \par
|
||||
Balls cannot be passed to someone who has one in hand.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
After a number of passes, the first four participants again hold all the balls. \par
|
||||
Participant 1 has a black ball. Which balls are held by participants 2, 3, and 4?
|
||||
|
||||
\begin{solution}
|
||||
\begin{itemize}
|
||||
\item the graph of possible moves is isomorphic to a circle (since 5 and 12 are coprime),
|
||||
\item but the balls get passed around, so swapping the place of any two balls is not allowed. \\
|
||||
Therefore, the balls will stay in their initial (cyclic) order:
|
||||
\end{itemize}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=\textwidth]{pass-sol.png}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\end{document}
|
38
src/Warm-Ups/Passing Balls/main.typ
Normal file
38
src/Warm-Ups/Passing Balls/main.typ
Normal file
@ -0,0 +1,38 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: Passing Balls],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
Twelve people are standing in a circle. Each is assigned a number between 1 and 12. \
|
||||
Participants numbered 1, 2, 3, and 4 hold red, green, yellow, and black balls, respectively. \
|
||||
Everyone else is empty-handed.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Each participant can pass their ball to any student that is exactly 5 positions away. \
|
||||
Balls cannot be passed to someone who has one in hand.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
After a number of passes, the first four participants again hold all the balls. \
|
||||
Participant 1 has a black ball. Which balls are held by participants 2, 3, and 4?
|
||||
|
||||
#solution([
|
||||
The graph of possible moves is isomorphic to a circle (since 5 and 12 are coprime), \
|
||||
but the balls get passed around, so swapping the place of any two balls is not allowed.
|
||||
|
||||
#v(3mm)
|
||||
|
||||
Therefore, the balls will stay in their initial (cyclic) order:
|
||||
// TODO: do this in CeTZ
|
||||
#figure(image("pass-sol.png", width: 90%))
|
||||
])
|
@ -1,34 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering,
|
||||
nopagenumber,
|
||||
hidewarning
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
\title{Warm-Up: Prime Factors}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today.}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\problem{}
|
||||
What proportion of integers have $2$ as their smallest prime factor?
|
||||
% 1^2
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
What proportion of integers have $3$ as their second-smallest prime factor?
|
||||
% 1/6
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the median second-smallest prime factor?
|
||||
% 37
|
||||
\vfill
|
||||
|
||||
\end{document}
|
29
src/Warm-Ups/Prime Factors/main.typ
Normal file
29
src/Warm-Ups/Prime Factors/main.typ
Normal file
@ -0,0 +1,29 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: Prime Factors],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
What proportion of integers have $2$ as their smallest prime factor?
|
||||
#solution([$1 div 2$])
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
What proportion of integers have $3$ as their second-smallest prime factor?
|
||||
#solution([$1 div 6$])
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
What is the median second-smallest prime factor?
|
||||
#solution([37])
|
||||
#v(1fr)
|
@ -1,153 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
hidewarning,
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
\usepackage{xcolor}
|
||||
\usepackage{soul}
|
||||
\usepackage{hyperref}
|
||||
|
||||
\definecolor{Light}{gray}{.90}
|
||||
\sethlcolor{Light}
|
||||
\newcommand{\htexttt}[1]{\texttt{\hl{#1}}}
|
||||
|
||||
|
||||
\title{The Regex Warm-Up}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
|
||||
Last time, we discussed Deterministic Finite Automata. One interesting application of these mathematical objects is found in computer science: Regular Expressions. \par
|
||||
This is often abbreviated \say{regex}, which is pronounced like \say{gif.}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Regex is a language used to specify patterns in a string. You can think of it as a concise way to define a DFA, using text instead of a huge graph. \par
|
||||
|
||||
Often enough, a clever regex pattern can do the work of a few hundred lines of code.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Like the DFAs we've studied, a regex pattern \textit{accepts} or \textit{rejects} a string. However, we don't usually use this terminology with regex, and instead say that a string \textit{matches} or \textit{doesn't match} a pattern.
|
||||
|
||||
\vspace{5mm}
|
||||
|
||||
Regex strings consist of characters, quantifiers, sets, and groups.
|
||||
|
||||
\vspace{5mm}
|
||||
|
||||
\textbf{Quantifiers} \par
|
||||
Quantifiers specify how many of a character to match. \par
|
||||
There are four of these: \htexttt{+}, \htexttt{*}, \htexttt{?}, and \htexttt{\{ \}}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\htexttt{+} means \say{match one or more of the preceding token} \par
|
||||
\htexttt{*} means \say{match zero or more of the preceding token}
|
||||
|
||||
For example, the pattern \htexttt{ca+t} will match the following strings:
|
||||
\begin{itemize}
|
||||
\item \texttt{cat}
|
||||
\item \texttt{caat}
|
||||
\item \texttt{caaaaaaaat}
|
||||
\end{itemize}
|
||||
\htexttt{ca+t} will \textbf{not} match the string \texttt{ct}. \par
|
||||
The pattern \htexttt{ca*t} will match all the strings above, including \texttt{ct}.
|
||||
\vspace{2mm}
|
||||
|
||||
|
||||
\htexttt{?} means \say{match one or none of the preceding token} \par
|
||||
The pattern \htexttt{linea?r} will match only \texttt{linear} and \texttt{liner}.
|
||||
\vspace{2mm}
|
||||
|
||||
Brackets \htexttt{\{min, max\}} are the most flexible quantifier. \par
|
||||
They specify exactly how many tokens to match: \par
|
||||
\htexttt{ab\{2\}a} will match only \texttt{abba}. \par
|
||||
\htexttt{ab\{1,3\}a} will match only \texttt{aba}, \texttt{abba}, and \texttt{abbba}. \par
|
||||
% spell:off
|
||||
\htexttt{ab\{2,\}a} will match any \texttt{ab...ba} with at least two \texttt{b}s.
|
||||
% spell:on
|
||||
|
||||
\vspace{5mm}
|
||||
|
||||
\problem{}
|
||||
Write the patterns \htexttt{a*} and \htexttt{a+} using only \htexttt{\{ \}}.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Draw a DFA equivalent to the regex pattern \htexttt{01*0}.
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\textbf{Characters, Sets, and Groups} \par
|
||||
In the previous section, we saw how we can specify characters literally: \par
|
||||
\texttt{a+} means \say{one or more \texttt{a} character}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
There are, of course, other ways we can specify characters.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The first such way is the \textit{set}, denoted \htexttt{[ ]}. A set can pretend to be any character inside it. \par
|
||||
For example, \htexttt{m[aoy]th} will match \texttt{math}, \texttt{moth}, or \texttt{myth}. \par
|
||||
\htexttt{a[01]+b} will match \texttt{a0b}, \texttt{a111b}, \texttt{a1100110b}, and any other similar string. \par
|
||||
You may negate a set with a \htexttt{\textasciicircum}. \par
|
||||
\htexttt{[\textasciicircum abc]} will match any character except \texttt{a}, \texttt{b}, or \texttt{c}, including symbols and spaces.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
If we want to keep characters together, we can use the \textit{group}, denoted \htexttt{( )}. \par
|
||||
|
||||
Groups work exactly as you'd expect, representing an atomic\footnotemark{} group of characters. \par
|
||||
\htexttt{a(01)+b} will match \texttt{a01b} and \texttt{a010101b}, but will \textbf{not} match \texttt{a0b}, \texttt{a1b}, or \texttt{a1100110b}.
|
||||
|
||||
\footnotetext{In other words, \say{unbreakable}}
|
||||
|
||||
|
||||
\problem{}<regex>
|
||||
You are now familiar with most of the tools regex has to offer. \par
|
||||
Write patterns that match the following strings:
|
||||
\begin{enumerate}[itemsep=1mm]
|
||||
\item An ISO-8601 date, like \texttt{2022-10-29}. \par
|
||||
\hint{Invalid dates like \texttt{2022-13-29} should also be matched.}
|
||||
|
||||
\item An email address. \par
|
||||
\hint{Don't forget about subdomains, like \texttt{math.ucla.edu}.}
|
||||
|
||||
\item A UCLA room number, like \texttt{MS 5118} or \texttt{Kinsey 1220B}.
|
||||
|
||||
\item Any ISBN-10 of the form \texttt{0-316-00395-7}. \par
|
||||
\hint{Remember that the check digit may be an \texttt{X}. Dashes are optional.}
|
||||
|
||||
\item A word of even length. \par
|
||||
\hint{The set \texttt{[A-z]} contains every english letter, capitalized and lowercase. \\
|
||||
\texttt{[a-z]} will only match lowercase letters.}
|
||||
|
||||
\item A word with exactly 3 vowels. \par
|
||||
\hint{The special token \texttt{\textbackslash w} will match any word character. It is equivalent to \texttt{[A-z0-9\_]} \\ \texttt{\_} stands for a literal underscore.}
|
||||
|
||||
\item A word that has even length and exactly 3 vowels.
|
||||
|
||||
\item A sentence that does not start with a capital letter.
|
||||
\end{enumerate}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
If you'd like to know more, check out \url{https://regexr.com}. It offers an interactive regex prompt, as well as a cheatsheet that explains every other regex token there is. \par
|
||||
You will find a nice set of challenges at \url{https://alf.nu/RegexGolf}.
|
||||
I especially encourage you to look into this if you are interested in computer science.
|
||||
\end{document}
|
141
src/Warm-Ups/Regex/main.typ
Normal file
141
src/Warm-Ups/Regex/main.typ
Normal file
@ -0,0 +1,141 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [The Regex Warm-Up],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
|
||||
Last time, we discussed Deterministic Finite Automata. One interesting application of these mathematical objects is found in computer science: Regular Expressions. \
|
||||
This is often abbreviated "regex," which is pronounced like "gif."
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Regex is a language used to specify patterns in a string. You can think of it as a concise way to define a DFA, using text instead of a huge graph. \
|
||||
|
||||
Often enough, a clever regex pattern can do the work of a few hundred lines of code.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Like the DFAs we've studied, a regex pattern _accepts_ or _rejects_ a string. However, we don't usually use this terminology with regex, and instead say that a string _matches_ or _doesn't match_ a pattern.
|
||||
|
||||
#v(5mm)
|
||||
|
||||
Regex strings consist of characters, quantifiers, sets, and groups.
|
||||
|
||||
#v(5mm)
|
||||
|
||||
|
||||
|
||||
*Quantifiers* \
|
||||
Quantifiers specify how many of a character to match. \
|
||||
There are four of these: `+`, `*`, `?`, and `{ }`.
|
||||
|
||||
#v(4mm)
|
||||
|
||||
`+` means "match one or more of the preceding token" \
|
||||
`*` means "match zero or more of the preceding token"
|
||||
|
||||
For example, the pattern `ca+t` will match the following strings:
|
||||
- `cat`
|
||||
- `caat`
|
||||
- `caaaaaaaat`
|
||||
`ca+t` will *not* match the string `ct`. \
|
||||
The pattern `ca*t` will match all the strings above, including `ct`.
|
||||
|
||||
|
||||
#v(4mm)
|
||||
|
||||
|
||||
`?` means "match one or none of the preceding token" \
|
||||
The pattern `linea?r` will match only `linear` and `liner`.
|
||||
|
||||
#v(4mm)
|
||||
|
||||
Brackets `{min, max}` are the most flexible quantifier. \
|
||||
They specify exactly how many tokens to match: \
|
||||
`ab{2}a` will match only `abba`. \
|
||||
`ab{1,3}a` will match only `aba`, `abba`, and `abbba`. \
|
||||
`ab{2,}a` will match any `ab...ba` with at least two `b`s. // spell:disable-line
|
||||
|
||||
#problem()
|
||||
Write the patterns `a*` and `a+` using only `{ }`.
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Draw a DFA equivalent to the regex pattern `01*0`.
|
||||
#v(1fr)
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
*Characters, Sets, and Groups* \
|
||||
In the previous section, we saw how we can specify characters literally: \
|
||||
`a+` means "one or more `a` characters" \
|
||||
There are, of course, other ways we can specify characters.
|
||||
|
||||
#v(4mm)
|
||||
|
||||
The first such way is the _set_, denoted `[ ]`. A set can pretend to be any character inside it. \
|
||||
For example, `m[aoy]th` will match `math`, `moth`, or `myth`. \
|
||||
`a[01]+b` will match `a0b`, `a111b`, `a1100110b`, and any other similar string. \
|
||||
|
||||
#v(4mm)
|
||||
|
||||
We can negate a set with a `^`. \
|
||||
`[^abc]` will match any single character except `a`, `b`, or `c`, including symbols and spaces.
|
||||
|
||||
#v(4mm)
|
||||
|
||||
If we want to keep characters together, we can use the _group_, denoted `( )`. \
|
||||
|
||||
Groups work exactly as you'd expect, representing an atomic#footnote([In other words, "unbreakable"]) group of characters. \
|
||||
`a(01)+b` will match `a01b` and `a010101b`, but will *not* match `a0b`, `a1b`, or `a1100110b`.
|
||||
|
||||
#problem()
|
||||
You are now familiar with most of the tools regex has to offer. \
|
||||
Write patterns that match the following strings:
|
||||
|
||||
- An ISO-8601 date, like `2022-10-29`. \
|
||||
#hint([Invalid dates like `2022-13-29` should also be matched.])
|
||||
|
||||
- An email address. \
|
||||
#hint([Don't forget about subdomains, like `math.ucla.edu`.])
|
||||
|
||||
- A UCLA room number, like `MS 5118` or `Kinsey 1220B`.
|
||||
|
||||
- Any ISBN-10 of the form `0-316-00395-7`. \
|
||||
#hint([Remember that the check digit may be an `X`. Dashes are optional.])
|
||||
|
||||
- A word of even length. \
|
||||
#hint([
|
||||
The set `[A-z]` contains every english letter, capitalized and lowercase. \
|
||||
`[a-z]` will only match lowercase letters.
|
||||
])
|
||||
|
||||
- A word with exactly 3 vowels. \
|
||||
#hint([
|
||||
The special token `\w` will match any word character. \
|
||||
It is equivalent to `[A-z0-9_]`. `_` represents a literal underscore.
|
||||
])
|
||||
|
||||
- A word that has even length and exactly 3 vowels.
|
||||
|
||||
- A sentence that does not start with a capital letter.
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
If you'd like to know more, check out `https://regexr.com`.
|
||||
It offers an interactive regex prompt,
|
||||
as well as a cheatsheet that explains every other regex token there is. \
|
||||
You can find a nice set of challenges at `https://alf.nu/RegexGolf`.
|
@ -1,30 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
\title{Warm-Up: Travellers}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\problem{}
|
||||
Four travellers are on a plane, each moving along a straight line at an arbitrary constant speed. \par
|
||||
No two of their paths are parallel, and no three intersect at the same point. \par
|
||||
We know that traveller A has met travelers B, C, and D, \par
|
||||
and that traveller B has met C and D (and A). Show that C and D must also have met. \par
|
||||
|
||||
\begin{solution}
|
||||
When a body travels at a constant speed, its graph with respect to time is a straight line. \par
|
||||
So, we add time axis in the third dimension, perpendicular to our plane. \par
|
||||
Naturally, the projection of each of these onto the plane corresponds to a road.
|
||||
|
||||
Now, note that two intersecting lines define a plane and use the conditions in the problem to show that no two lines are parallel.
|
||||
\end{solution}
|
||||
|
||||
\end{document}
|
26
src/Warm-Ups/Travellers/main.typ
Normal file
26
src/Warm-Ups/Travellers/main.typ
Normal file
@ -0,0 +1,26 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: Travellers],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
Four travellers are on a plane, each moving along a straight line at an arbitrary constant speed. \
|
||||
No two of their paths are parallel, and no three intersect at the same point. \
|
||||
We know that traveller A has met travelers B, C, and D, \
|
||||
and that traveller B has met C and D (and A). Show that C and D must also have met.
|
||||
|
||||
#solution([
|
||||
When a body travels at a constant speed, its graph with respect to time is a straight line. \
|
||||
So, we add time axis in the third dimension, perpendicular to our plane. \
|
||||
Naturally, the projection of each of these onto the plane corresponds to a road.
|
||||
|
||||
Now, note that two intersecting lines define a plane and use the conditions in the problem to show that no two lines are parallel.
|
||||
])
|
@ -1,150 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
\makeatletter
|
||||
\newcommand{\thisone}{
|
||||
\if@solutions
|
||||
{\color{red} $\Leftarrow$ \texttt{this one}}
|
||||
\else\fi
|
||||
}
|
||||
|
||||
\title{Zeno's Furniture}
|
||||
\uptitlel{Warm Ups}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
Zeno Furniture sells exactly five types of furniture:
|
||||
\begin{itemize}
|
||||
\item Footstools
|
||||
\item Hutches
|
||||
\item Sideboards
|
||||
\item Tables
|
||||
\item Vanities
|
||||
\end{itemize}
|
||||
Irene buys four items, each of a different type,
|
||||
and each made of exactly one kind of wood:
|
||||
\begin{itemize}
|
||||
\item Maple
|
||||
\item Oak
|
||||
\item Pine
|
||||
\item Rosewood
|
||||
\end{itemize}
|
||||
|
||||
The following conditions govern Irene's purchases:
|
||||
\begin{itemize}
|
||||
\item Any vanity she buys is Maple.
|
||||
\item Any rosewood item she buys is a sideboard.
|
||||
\item If she buys a vanity, she does not buy a footstool.
|
||||
\item If she buys a footstool, she also buys a table made of the same material.
|
||||
\item Irene does not buy an oak table.
|
||||
\item Exactly two of the items she buys are made of the same kind of wood.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Which one of the following could be an accurate
|
||||
list of the items Irene buys? \par
|
||||
\begin{itemize}
|
||||
\item maple footstool, maple hutch, rosewood sideboard, maple table
|
||||
\item oak hutch, rosewood sideboard, pine table, oak vanity
|
||||
\item rosewood hutch, maple sideboard, oak table, maple vanity
|
||||
\item pine footstool, rosewood sideboard, pine table, maple vanity
|
||||
\item maple footstool, pine hutch, oak sideboard, maple table \thisone{}
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
If Irene buys one item made of rosewood and two items made
|
||||
of maple, then which one of the following pairs could be two
|
||||
of the items she buys?
|
||||
\begin{itemize}
|
||||
\item a rosewood sideboard and an oak footstool
|
||||
\item an oak hutch and a pine sideboard
|
||||
\item an oak hutch and a maple table \thisone{}
|
||||
\item a maple sideboard and a maple vanity
|
||||
\item a maple hutch and a maple table
|
||||
\end{itemize}
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Which one of the following is a complete and accurate list
|
||||
of all the woods any footstool that Irene buys could be made of?
|
||||
\begin{itemize}
|
||||
\item maple, oak
|
||||
\item maple, pine \thisone{}
|
||||
\item maple, rosewood
|
||||
\item maple, oak, pine
|
||||
\item maple, oak, pine, rosewood
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Suppose Irene buys a footstool. Then which one of the following
|
||||
is a complete and accurate list of items and any one of which she
|
||||
could buy in maple?
|
||||
\begin{itemize}
|
||||
\item footstool, hutch, sideboard, table, vanity
|
||||
\item footstool, hutch, sideboard, table \thisone{}
|
||||
\item footstool, hutch, sideboard
|
||||
\item footstool, hutch
|
||||
\item footstool
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Which one of the following cannot be the two items Irene
|
||||
buys that are made of the same wood as each other?
|
||||
\begin{itemize}
|
||||
\item footstool, hutch \thisone{}
|
||||
\item hutch, sideboard
|
||||
\item hutch, table
|
||||
\item sideboard, vanity
|
||||
\item table, vanity
|
||||
\end{itemize}
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
If Irene does not buy an item made of maple, then each of the
|
||||
following must be true except...
|
||||
\begin{itemize}
|
||||
\item Irene buys a footstool
|
||||
\item Irene buys a pine hutch \thisone{}
|
||||
\item Irene buys a rosewood sideboard
|
||||
\item Irene buys exactly one item made of oak
|
||||
\item Irene buys exactly two items made of pine
|
||||
\end{itemize}
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Suppose the condition that Irene does not buy an oak table is
|
||||
replaced with the condition that she does not buy a pine table.
|
||||
If all the other conditions hold as originally given, which of the
|
||||
following cannot be true?
|
||||
\begin{itemize}
|
||||
\item Irene buys an oak footstool.
|
||||
\item Irene buys a hutch and a table made of the same wood.
|
||||
\item Irene buys a vanity, but she does not buy an oak table.
|
||||
\item Irene buys a maple table and an oak hutch.
|
||||
\item Irene buys a rosewood sideboard and exactly two items made of pine. \thisone{}
|
||||
\end{itemize}
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\end{document}
|
131
src/Warm-Ups/Zeno's Furniture/main.typ
Normal file
131
src/Warm-Ups/Zeno's Furniture/main.typ
Normal file
@ -0,0 +1,131 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: Zeno's Furniture],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#let thisone = if_solutions(
|
||||
text(fill: ored, [#sym.arrow.l.double.long `this one`]),
|
||||
)
|
||||
|
||||
|
||||
Zeno's Furniture sells exactly five types of furniture: \
|
||||
Footstools, Hutches, Sideboards, Tables, and Vanities.
|
||||
|
||||
#v(3mm)
|
||||
|
||||
Each can be made of exactly one kind of wood: \
|
||||
Maple, Oak, Pine, or Rosewood
|
||||
|
||||
#v(3mm)
|
||||
|
||||
Irene buys four items, each of a different type. \
|
||||
The following conditions govern Irene's purchases:
|
||||
- Any vanity she buys is Maple.
|
||||
- Any rosewood item she buys is a sideboard.
|
||||
- If she buys a vanity, she does not buy a footstool.
|
||||
- If she buys a footstool, she also buys a table made of the same material.
|
||||
- Irene does not buy an oak table.
|
||||
- Exactly two of the items she buys are made of the same kind of wood.
|
||||
|
||||
|
||||
|
||||
#v(5mm)
|
||||
|
||||
|
||||
#problem()
|
||||
Which one of the following could be an accurate
|
||||
list of the items Irene buys? \
|
||||
- maple footstool, maple hutch, rosewood sideboard, maple table
|
||||
- oak hutch, rosewood sideboard, pine table, oak vanity
|
||||
- rosewood hutch, maple sideboard, oak table, maple vanity
|
||||
- pine footstool, rosewood sideboard, pine table, maple vanity
|
||||
- maple footstool, pine hutch, oak sideboard, maple table #thisone
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
If Irene buys one item made of rosewood and two items made
|
||||
of maple, then which one of the following pairs could be two
|
||||
of the items she buys?
|
||||
- a rosewood sideboard and an oak footstool
|
||||
- an oak hutch and a pine sideboard
|
||||
- an oak hutch and a maple table #thisone
|
||||
- a maple sideboard and a maple vanity
|
||||
- a maple hutch and a maple table
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#problem()
|
||||
Which one of the following is a complete and accurate list
|
||||
of all the woods any footstool that Irene buys could be made of?
|
||||
- maple, oak
|
||||
- maple, pine #thisone
|
||||
- maple, rosewood
|
||||
- maple, oak, pine
|
||||
- maple, oak, pine, rosewood
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Suppose Irene buys a footstool. Then which one of the following
|
||||
is a complete and accurate list of items and any one of which she
|
||||
could buy in maple?
|
||||
- footstool, hutch, sideboard, table, vanity
|
||||
- footstool, hutch, sideboard, table #thisone
|
||||
- footstool, hutch, sideboard
|
||||
- footstool, hutch
|
||||
- footstool
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Which one of the following cannot be the two items Irene
|
||||
buys that are made of the same wood as each other?
|
||||
- footstool, hutch #thisone
|
||||
- hutch, sideboard
|
||||
- hutch, table
|
||||
- sideboard, vanity
|
||||
- table, vanity
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
|
||||
|
||||
|
||||
#problem()
|
||||
If Irene does not buy an item made of maple, then each of the
|
||||
following must be true except...
|
||||
- Irene buys a footstool
|
||||
- Irene buys a pine hutch #thisone
|
||||
- Irene buys a rosewood sideboard
|
||||
- Irene buys exactly one item made of oak
|
||||
- Irene buys exactly two items made of pine
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Suppose the condition that Irene does not buy an oak table is
|
||||
replaced with the condition that she does not buy a pine table.
|
||||
If all the other conditions hold as originally given, which of the
|
||||
following cannot be true?
|
||||
- Irene buys an oak footstool.
|
||||
- Irene buys a hutch and a table made of the same wood.
|
||||
- Irene buys a vanity, but she does not buy an oak table.
|
||||
- Irene buys a maple table and an oak hutch.
|
||||
- Irene buys a rosewood sideboard and exactly two items made of pine. #thisone
|
||||
|
||||
#v(1fr)
|
@ -1,22 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
hidewarning,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
\title{Warm-Up: \texttt{fmod}}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today.}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\problem{}
|
||||
I'm sure you're all familiar with how \texttt{mod(a, b)} and \texttt{remainder(a, b)} work with integers. \par
|
||||
Devise an equivalent for floats (i.e, real numbers).
|
||||
|
||||
\end{document}
|
16
src/Warm-Ups/fmod/main.typ
Normal file
16
src/Warm-Ups/fmod/main.typ
Normal file
@ -0,0 +1,16 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: `fmod`],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
I'm sure you're all familiar with how `mod(a, b)` and `remainder(a, b)` \ work when `a` and `b` are integers.
|
||||
Devise an equivalent for floats (i.e, real numbers).
|
Loading…
x
Reference in New Issue
Block a user