Compare commits

..

1 Commits

Author SHA1 Message Date
dfddfb5137
Convert "Odd Dice" to typst
All checks were successful
CI / Typst formatting (pull_request) Successful in 10s
CI / Typos (pull_request) Successful in 18s
CI / Build (pull_request) Successful in 10m31s
2025-01-23 12:11:59 -08:00

View File

@ -1,4 +1,6 @@
#import "@local/handout:0.1.0": * #import "@local/handout:0.1.0": *
#import "@preview/cetz:0.3.1"
#show: doc => handout( #show: doc => handout(
doc, doc,
@ -27,7 +29,7 @@ Create a set of nontransitive six-sided dice. \
- Die $B$: $1, 1, 6, 6, 8, 8$ - Die $B$: $1, 1, 6, 6, 8, 8$
- Die $C$: $3, 3, 5, 5, 7, 7$ - Die $C$: $3, 3, 5, 5, 7, 7$
#v(4mm) #v(2mm)
Another solution is below: Another solution is below:
- Die $A$: $3, 3, 3, 3, 3, 6$ - Die $A$: $3, 3, 3, 3, 3, 6$
@ -47,38 +49,66 @@ Now, consider the set of six-sided dice below:
- Die $E$: $0, 5, 5, 5, 5, 5$ - Die $E$: $0, 5, 5, 5, 5, 5$
On average, which die beats each of the others? Draw a diagram. On average, which die beats each of the others? Draw a diagram.
#solution([ #solution(
/* align(
\begin{tikzpicture}[scale = 0.5] center,
\begin{scope}[layer = nodes] cetz.canvas({
\node[main] (a) at (-2, 0.2) {$a$}; import cetz.draw: *
\node[main] (b) at (0, 2) {$b$};
\node[main] (c) at (2, 0.2) {$c$};
\node[main] (d) at (1, -2) {$d$};
\node[main] (e) at (-1, -2) {$e$};
\end{scope}
\draw[->] let s = 0.8 // Scale
(a) edge (b) let t = 13pt * s // text size
(b) edge (c) let radius = 0.3 * s
(c) edge (d)
(d) edge (e)
(e) edge (a)
(a) edge (c) // Points
(b) edge (d) let a = (-2 * s, 0.2 * s)
(c) edge (e) let b = (0 * s, 2 * s)
(d) edge (a) let c = (2 * s, 0.2 * s)
(e) edge (b) let d = (1.2 * s, -2.1 * s)
; let e = (-1.2 * s, -2.1 * s)
\end{tikzpicture}
*/ set-style(
]) stroke: (thickness: 0.6mm * s),
mark: (
end: (
symbol: ">",
fill: black,
offset: radius + (0.025 * s),
width: 1.2mm * s,
length: 1.2mm * s,
),
),
)
line(a, b)
line(b, c)
line(c, d)
line(d, e)
line(e, a)
line(a, c)
line(b, d)
line(c, e)
line(d, a)
line(e, b)
circle(a, radius: radius, fill: oblue, stroke: none)
circle(b, radius: radius, fill: oblue, stroke: none)
circle(c, radius: radius, fill: oblue, stroke: none)
circle(d, radius: radius, fill: oblue, stroke: none)
circle(e, radius: radius, fill: oblue, stroke: none)
content(a, text(fill: white, size: t, [*A*]))
content(b, text(fill: white, size: t, [*B*]))
content(c, text(fill: white, size: t, [*C*]))
content(d, text(fill: white, size: t, [*D*]))
content(e, text(fill: white, size: t, [*E*]))
}),
),
)
#v(1fr) #v(1fr)
#problem() #problem()
Now, say we roll each die twice. What happens to the graph fromE the previous problem? Now, say we roll each die twice. What happens to the graph from the previous problem?
#solution([ #solution([
The direction of each edge is reversed! The direction of each edge is reversed!