Formatting
This commit is contained in:
parent
1c5addd931
commit
fcef70dc61
@ -247,7 +247,7 @@ $\frac{p}{q}$ satisfying $|\alpha - \frac pq| < \frac{1}{2q^2}$.
|
||||
\item Prove that $(x+y)^2 \geq 4xy$ for any real $x,y$.
|
||||
\item Let $p_n/q_n$ be the $n$th convergent to $\alpha$. Prove that
|
||||
\[
|
||||
|\frac{p_n}{q_n} - \frac{p_{n+1}}{q_{n+1}}|^2 \ \geq \ 4 | \frac{p_n}{q_n} - \alpha | | \frac{p_{n+1}}{q_{n+1}} - \alpha |
|
||||
\biggl|\frac{p_n}{q_n} - \frac{p_{n+1}}{q_{n+1}}\biggr|^2 \ \geq \ 4 \biggl| \frac{p_n}{q_n} - \alpha \biggr| \biggl| \frac{p_{n+1}}{q_{n+1}} - \alpha \biggr|
|
||||
\]
|
||||
\hint{$\alpha$ lies in between $\frac{p_n}{q_n}$ and $\frac{p_{n+1}}{q_{n+1}}$}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user