Minor edits

This commit is contained in:
mark 2023-12-05 17:32:03 -08:00
parent 84b40a2ff0
commit fbc7d87577
Signed by: Mark
GPG Key ID: C6D63995FE72FD80
3 changed files with 5 additions and 5 deletions

View File

@ -115,7 +115,7 @@ Similarly derive the formula $p_nq_{n-2}-p_{n-2}q_n = (-1)^{n-2}a_n$.
\problem{}<diff>
Recall $C_n=p_n/q_n$.
Show that $C_n-C_{n-1}=\frac{(-1)^{n-1}}{q_{n-1}q_n}$
and $C_n-C_{n-2}=\frac{(-1)^{n-2}a_n}{q_{n-2}q_n}$.
and $C_n-C_{n-2}=\frac{(-1)^{n-2}a_n}{q_{n-2}q_n}$. \par
\hint{Use \ref{form1} and $p_nq_{n-2}-p_{n-2}q_n = (-1)^{n-2}a_n$ respectively}
In \ref{sqrt5}, the value $\alpha-C_n$ alternated between negative and positive

View File

@ -93,7 +93,7 @@ What is their shared secret?
\problem{}
Let $p = 11$, $g = 2$, $a = 9$, and $b = 4$. \par
Run the algorithm. What is the resultingw shared secret?
Run the algorithm. What is the resulting shared secret?
\begin{solution}
$g^b = 5$\par

View File

@ -117,9 +117,9 @@ Also, say Eve knows the value of $m_1 - m_2$. How can Eve find $m_1$ and $m_2$?\
\note[Note]{If Bob doesn't change his key, Eve will also be able to decrypt future messages.}
\begin{solution}
$c_2 - d_2 = (m_1 - m_2)A^k$. \par
So, $(c_2 - d_2)(m_1 - m_2)^{-1} = A^k$.\par
Now that we have $A^k$, we can compute $m_1 = c_2 \times A^{-k}$.
$c_2 - d_2 = (m_1 - m_2)A^k$ \par
So, $(c_2 - d_2)(m_1 - m_2)^{-1} = A^k$\par
Now that we have $A^k$, we can compute $m_1 = c_2 \times A^{-k}$
\end{solution}
\vfill