Minor edits
This commit is contained in:
@ -93,7 +93,7 @@ What is their shared secret?
|
||||
|
||||
\problem{}
|
||||
Let $p = 11$, $g = 2$, $a = 9$, and $b = 4$. \par
|
||||
Run the algorithm. What is the resultingw shared secret?
|
||||
Run the algorithm. What is the resulting shared secret?
|
||||
|
||||
\begin{solution}
|
||||
$g^b = 5$\par
|
||||
|
@ -117,9 +117,9 @@ Also, say Eve knows the value of $m_1 - m_2$. How can Eve find $m_1$ and $m_2$?\
|
||||
\note[Note]{If Bob doesn't change his key, Eve will also be able to decrypt future messages.}
|
||||
|
||||
\begin{solution}
|
||||
$c_2 - d_2 = (m_1 - m_2)A^k$. \par
|
||||
So, $(c_2 - d_2)(m_1 - m_2)^{-1} = A^k$.\par
|
||||
Now that we have $A^k$, we can compute $m_1 = c_2 \times A^{-k}$.
|
||||
$c_2 - d_2 = (m_1 - m_2)A^k$ \par
|
||||
So, $(c_2 - d_2)(m_1 - m_2)^{-1} = A^k$\par
|
||||
Now that we have $A^k$, we can compute $m_1 = c_2 \times A^{-k}$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
Reference in New Issue
Block a user