Minor edits
This commit is contained in:
@ -115,7 +115,7 @@ Similarly derive the formula $p_nq_{n-2}-p_{n-2}q_n = (-1)^{n-2}a_n$.
|
||||
\problem{}<diff>
|
||||
Recall $C_n=p_n/q_n$.
|
||||
Show that $C_n-C_{n-1}=\frac{(-1)^{n-1}}{q_{n-1}q_n}$
|
||||
and $C_n-C_{n-2}=\frac{(-1)^{n-2}a_n}{q_{n-2}q_n}$.
|
||||
and $C_n-C_{n-2}=\frac{(-1)^{n-2}a_n}{q_{n-2}q_n}$. \par
|
||||
\hint{Use \ref{form1} and $p_nq_{n-2}-p_{n-2}q_n = (-1)^{n-2}a_n$ respectively}
|
||||
|
||||
In \ref{sqrt5}, the value $\alpha-C_n$ alternated between negative and positive
|
||||
|
Reference in New Issue
Block a user