Minor edits

This commit is contained in:
2023-12-05 17:32:03 -08:00
parent 84b40a2ff0
commit fbc7d87577
3 changed files with 5 additions and 5 deletions

View File

@ -115,7 +115,7 @@ Similarly derive the formula $p_nq_{n-2}-p_{n-2}q_n = (-1)^{n-2}a_n$.
\problem{}<diff>
Recall $C_n=p_n/q_n$.
Show that $C_n-C_{n-1}=\frac{(-1)^{n-1}}{q_{n-1}q_n}$
and $C_n-C_{n-2}=\frac{(-1)^{n-2}a_n}{q_{n-2}q_n}$.
and $C_n-C_{n-2}=\frac{(-1)^{n-2}a_n}{q_{n-2}q_n}$. \par
\hint{Use \ref{form1} and $p_nq_{n-2}-p_{n-2}q_n = (-1)^{n-2}a_n$ respectively}
In \ref{sqrt5}, the value $\alpha-C_n$ alternated between negative and positive