Minor edits
This commit is contained in:
@ -7,7 +7,7 @@ This is read \say{$S$ satisfies $\varphi$}
|
||||
|
||||
\definition{}
|
||||
Let $S$ and $T$ be structures. \par
|
||||
We say $S$ and $T$ are \textit{equivalent} and write $S \equiv T$ if for any formula $\varphi$, $S \models \varphi \Longleftrightarrow T \models \varphi$. \par
|
||||
We say $S$ and $T$ are \textit{equivalent} (and write $S \equiv T$) if for any formula $\varphi$, $S \models \varphi \Longleftrightarrow T \models \varphi$. \par
|
||||
If $S$ and $T$ are not equivalent, we write $S \not\equiv T$.
|
||||
|
||||
\problem{}
|
||||
|
Reference in New Issue
Block a user